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1 Distributions
1.1 Introduction, limite des

fonctions, approche physique

Le comportement de nombreux systèmes phy-
siques est décrit par des équations différentielles fai-
sant intervenir des grandeurs qui sont des fonctions
continues (𝑣𝑐(𝑡), 𝑖𝐿(𝑡)…).

Ainsi si le système suit l’équation différentielle à
partir de 𝑡 = 𝑡0 et si on connaît la valeur des gran-
deurs continues à 𝑡 = 𝑡−

0 , alors on peut en déduire
leur valeur en 𝑡 = 𝑡+

0 .

Cependant on rencontre un certain nombre de sys-
tèmes avec des grandeurs discontinues. C’est sou-
vent dans des situations limites ou si on a « mal choi-
si » les grandeurs.

Ex 1 : 𝑖(𝑡) dans un circuit RC avec R qui tend vers 0.

Ex 2 : 𝑓 (𝑡) pour un rebond élastique d’une balle sur
une paroi immobile. 𝑓 (𝑡) n’est pas une fonction clas-
sique sinon on aurait ∫0+

0− 𝑓 = 0.

Ex 3 : Charges électriques en électrostatique. Pour
une charge ponctuelle 𝑞 en 𝑀, elle agit et crée un po-
tentiel à l’origine 𝑂 (à la distance 𝑟) : 𝑈𝑀 = 1

4𝜋𝜖0

𝑞𝑀
𝑟

(2).

Distribution de charges dans un volume 𝑣 de densi-
té volumique de charge 𝜌:

• Charge totale 𝑞 = ∭𝑉 𝜌𝑣 d𝑣 (3) ;
• Potentiel à l’origine 𝑢 = 1

4𝜋𝜖0
∭ 𝜌𝑣

𝑟 d𝑣 (4).

Aucun appareil de mesure nous donne directement
la valeur de la densité de charge. On ne peut qu’en
mesurer l’effet et accéder à la valeur indirectement.

Par exemple, ∫ℝ3 𝜌(𝑀) 𝜑(𝑀) d𝑀 avec :

• Pour 𝑞 : 𝜑(𝑀) = 1 ;
• Pour 𝑢 : 𝜑(𝑀) = 1

4𝜋𝜖0

1
𝑟 ;

𝜌 ∶ 𝜑 ↦ ⟨𝜌, 𝜑⟩

En connaissant l’intégrale pour un ensemble de
fonction 𝜑, on peut remonter à 𝜌.

Comment passer de (1) à (3), de (2) à (4) ?

𝑙𝑖𝑚𝑣→0⟨𝜌𝑣, 𝜑⟩ = 𝑞𝑀𝜑(𝑀)

= 𝑞𝑀⟨𝛿𝑀, 𝜑⟩

avec 𝛿𝑀 une impulsion de Dirac.

Ex 4 : capteur de température le long d’une barre.

Le capteur n’est pas ponctuel, donc on ne peut pas
accéder à la température 𝜃(𝑥0) car on mesure 𝜃0
pour le voisinage 𝑉(𝑥0).

𝜃0 =
1

2Δ
∫

𝑥0+∆

𝑥0−∆
𝜃

= ∫
+∞

−∞
𝜃(𝑥) 𝜑(𝑥) d𝑥

= ⟨𝜃, 𝜑0⟩

𝜑0 est modélisé ici par une fonction valant 1
2∆ entre

𝑥0 − Δ et 𝑥0 + Δ et sinon nulle.

En réalité 𝜑0 dépend du capteur.

La théorie des distributions permet de généraliser
la notion de fonction, d’étendre la notion de déri-
vabilité à des fonctions non continues. Elle permet
de considérer des cas limites sans avoir à les écrire
explicitement, tout en considérant les propriétés
habituelles, opérateurs classiques (dérivation, in-
tégration, ∗, TL, TF…) définies pour des bonnes
fonctions.

La théorie des distributions donne un sens mathé-
matique rigoureux à des objets manipulés par des
physiciens.
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1 Distributions

1.2 Distributions : définition et
exemples

Soit ℱ un ensemble de bonnes fonctions sur ℝ vers
ℝ ou ℂ. 𝑇 est une fonctionnelle :

𝑇 ∶ 𝜑 ∈ ℱ ↦ 𝑇(𝜑) = ⟨𝑇, 𝜑⟩ ∈ ℝ ou ℂ

Afin d’avoir un ensemble de fonctionnelles larges,
on impose des contraintes fortes sur 𝜑 que l’on ap-
pelle fonction test.

Dans la suite, on se limite à des fonctions 𝜑 de ℝ
dans ℝ ou ℂ. Cependant une extension à des fonc-
tions sur ℝ𝑛 est possible.

1.2.1 Espace des fonctions test

Espace des fonctions test 𝒟 : ensemble des fonc-
tions de ℝ dans ℝ ou ℂ, 𝐶∞ et à support borné.

Support d’une fonction 𝜑 réelle : le plus petit inter-
valle réel fermé en dehors duquel 𝜑 est nul.

Propriétés :

• 𝒟 n’est pas vide (cf TD) ;
• (𝒟, +, ×) est un espace vectoriel ;
• toutes les dérivées de 𝜑 sont bornées, continues

et intégrables ;
• la limite vers ±∞ de 𝜑 est nulle.

1.2.2 Distributions

Distribution 𝑇 sur 𝒟 : une fonctionnelle linéaire et
continue sur 𝒟 . Notation : 𝑇 ∶ 𝜑 ∈ 𝒟 ↦ ⟨𝑇, 𝜑⟩

On désigne par 𝒟 ′ l’ensemble des distributions sur
𝒟 . On dit encore que 𝒟 ′ est l’espace dual de 𝒟 .

Continuité : ∀{𝜑𝑛}𝑛∈ℕ ∈ 𝒟 →𝒟 𝜑 ∈ 𝒟 alors
{⟨𝑇, 𝜑𝑛⟩}𝑛∈ℕ → ⟨𝑇, 𝜑⟩.

1.2.3 Convergence dans 𝒟

Définition : une suite de fonction {𝜑𝑛}𝑛∈ℕ de 𝒟 CV
dans 𝒟 vers une fonction 𝜑 de 𝒟 si :

• les supports de 𝜑𝑛 sont contenus dans un
même ensemble borné indépendant de 𝑛.

• ∀𝑘, 𝜑(𝑘)
𝑛 CVU vers 𝜑(𝑘).

Convergence simple : voir web.

Convergence uniforme : voir web. Il faut que la fonc-
tion 𝜑 soit entourée d’un « tuyau » (flexible autour
de 𝜑) de taille 𝜖 dans lequel les fonctions 𝜑𝑛 doivent
finir par entrer pour 𝑛 assez grand.

1.2.4 Exemples

1.2.4.1 Distributions régulières

A toute fonction 𝑓 ∈ ℒ1
𝑙𝑜𝑐 on peut associer une dis-

tribution 𝑇𝑓 ∈ 𝒟 ′ définie par :

∀𝜑 ∈ 𝒟, ⟨𝑇𝑓 , 𝜑⟩ = ∫
+∞

−∞
𝑓 (𝑥) 𝜑(𝑥) d𝑥 = ⟨𝑓 , 𝜑⟩

Une telle distribution est dite régulière.

Démo :

• Existence : L’intégrale converge car 𝑓 ∈ ℒ1
𝑙𝑜𝑐.

• Linéarité par la linéarité de l’intégrale.

• Continuité : Soit {𝜑𝑛}𝑛∈ℕ CVU vers 𝜑. |⟨𝑇𝑓 , 𝜑𝑛⟩−
⟨𝑇𝑓 , 𝜑⟩| = ... ≤ sup|𝜑𝑛(𝑥) − 𝜑(𝑥)| ∫𝑏

𝑎 |𝑓 | CV vers 0.

1.2.4.2 Distributions singulières de 𝐷′

C’est toutes les distributions de 𝐷′ qui ne sont pas
régulières.

Exemple 1 : La distribution de Dirac.

𝛿 ∶ 𝜑 ∈ 𝒟 ↦ ⟨𝛿, 𝜑⟩ = 𝜑(0)

Démo :

• Existence : 𝜑 ∈ 𝒟 donc 𝜑(0) est fini.
• Linéarité : si on prend une somme pondérée de

fonctions, on obtient la même somme pondérée
à l’origine.

• Continuité : soit 𝜑𝑛 qui tend vers 𝜑.
⟨𝛿, 𝜑𝑛⟩ = 𝜑𝑛(0) tend vers 𝜑(0) = ⟨𝛿, 𝜑⟩.

On symbolise le dirac sur un tracé par une flèche
vers le haut à l’origine.

Il existe des distributions découlant de 𝛿.

Exemple 2 : vp(1
𝑥). Voir le TD.

6



1.3 Opérations élémentaires sur les distributions

1.3 Opérations élémentaires sur les
distributions

1.3.1 Addition et multiplication

Pour toute distributions 𝑇1 et 𝑇2 de 𝒟 ′ et pour tout
𝛼1 et 𝛼2 complexes ou réels.

∀𝜑 ∈ 𝒟, ⟨𝛼1𝑇1 + 𝛼2𝑇2, 𝜑⟩ = 𝛼1⟨𝑇1, 𝜑⟩ + 𝛼2⟨𝑇2, 𝜑⟩

Donc 𝑇 = 𝛼1𝑇1 + 𝛼2𝑇2 est une fonctionnelle linéaire
et continue. Donc 𝑇 ∈ 𝒟 ′.

Donc (𝒟 ′, +, ×) est un espace vectoriel. En réalité
⟨𝑇, 𝜑⟩ est une forme bilinéaire.

La distribution nulle de 𝒟 ′ : notée 𝑇 = 0.

Égalité de deux distributions :

𝑇1 = 𝑇2 ⟺ 𝑇1 − 𝑇2 = 0 ⟺ ∀𝜑, ⟨𝑇1 − 𝑇2, 𝜑⟩ = 0

Cas particulier : 𝑇1 = 𝑇𝑓1 et 𝑇2 = 𝑇𝑓2 avec 𝑓1, 𝑓2 ∈
ℒ1

𝑙𝑜𝑐. ⟨𝛼1𝑇1 + 𝛼2𝑇2, 𝜑⟩ = 𝛼1⟨𝑇𝑓1, 𝜑⟩ + 𝛼2⟨𝑇𝑓2, 𝜑⟩ =
∫+∞

−∞ (𝛼1𝑓1(𝑥) + 𝛼2𝑓2(𝑥))𝜑(𝑥) d𝑥 = ⟨𝑇𝛼1𝑓1+𝛼2𝑓2 , 𝜑⟩

Donc :
𝛼1𝑇1 + 𝛼2𝑇2 = 𝑇𝛼1𝑓1+𝛼2𝑓2

1.3.2 Translation

On définit 𝑓𝑎 la translaté de d’une fonction réelle 𝑓
de 𝑎 ∈ ℝ.

𝑓𝑎 ∶ 𝑥 ↦ 𝑓𝑎(𝑥) = 𝑓 (𝑥 − 𝑎)

Pour une distribution :

∀𝜑 ∈ 𝒟, ⟨𝑇𝑎, 𝜑⟩ = ⟨𝑇, 𝜑−𝑎⟩

Pour une distribution régulière, on peut le montrer
par un changement de variable.

Avec le Dirac : ⟨𝛿𝑎, 𝜑⟩ = ⟨𝛿, 𝜑−𝑎⟩ = 𝜑(𝑎)

Pour éviter les indices, on fait un abus de notation :

⟨𝛿(𝑥 − 𝑎), 𝜑(𝑥)⟩ = 𝜑(𝑎)

Peigne de Dirac : = ∑𝑛 𝛿𝑛

⟨ , 𝜑⟩ = ∑𝑛 𝜑(𝑛) existe car on somme un nombre
fini de termes car 𝜑 est à support borné.

Distribution périodique de période 𝑎 ∈ ℝ : 𝑇𝑎 = 𝑇.

1.3.3 Retournement

On note 𝑇− la fonction retournée.

On montre que ∀𝜑 ∈ 𝒟, ⟨𝑇−, 𝜑⟩ = ⟨𝑇, 𝜑−⟩.

𝑇− = 𝑇 est paire, 𝑇− = −𝑇 est impaire.

1.3.4 Conjugaison

À 𝑇 on associe la distribution conjuguée 𝑇∗.

∀𝜑, ⟨𝑇∗, 𝜑⟩ = ⟨𝑇, 𝜑∗⟩∗

1.3.5 Dilatation

La dilatation de 𝑓 est 𝑓(𝑎) ∶ 𝑥 ↦ 𝑓 (𝑎𝑥), avec 𝑎 ∈ ℝ∗.

La dilatation de 𝑇 est 𝑇(𝑎) tel que

⟨𝑇(𝑎), 𝜑⟩ =
1
|𝑎| ⟨𝑇, 𝜑( 1

𝑎 )⟩

ou encore

⟨𝑇(𝑎𝑥), 𝜑(𝑥)⟩ =
1
|𝑎|

⟨𝑇(𝑥), 𝜑 (
𝑥
𝑎

)⟩

Avec le Dirac : 𝛿(𝑎𝑥) = 1
|𝑎|𝛿(𝑥)

1.3.6 Produit

Si 𝑓 , 𝑔 ∈ ℒ1
𝑙𝑜𝑐, 𝑓 𝑔 n’est pas nécessairement dans ℒ1

𝑙𝑜𝑐.
Ainsi le produit peut ne pas exister.

Soit 𝜃 ∈ 𝒞∞.
⟨𝜃𝑇, 𝜑⟩ = ⟨𝑇, 𝜃𝜑⟩

𝜃𝜑 appartient à 𝒟 . Donc 𝜃𝑇 appartient à 𝒟 ′.

Cas particulier : 𝜃(𝑥)𝛿(𝑥) = 𝜃(0)𝛿(𝑥)

Remarque : 𝑥𝑇(𝑥) = 0 ⟺ 𝑇 = 𝑐𝛿 (cf TD)

On ne sait pas encore faire 𝑢(𝑥)𝛿(𝑥) car l’échelon
n’est pas 𝐶∞.

1.3.7 Convergence dans 𝒟 ′

Définition : Une suite de distributions {𝑇𝑛}𝑛∈ℕ de
𝒟 ′ converge dans 𝒟 ′ si ∀𝜑 ∈ 𝒟, ⟨𝑇𝑛, 𝜑⟩𝑛 CV.

On note ⟨𝑇, 𝜑⟩ cette limite. On montre que 𝑇 appar-
tient à 𝒟 ′ (hors programme).

On note ⟨𝑇𝑛, 𝜑⟩ →𝐷′
𝑛→∞ ⟨𝑇, 𝜑⟩ ou lim𝑛→∞𝑇𝑛 =𝐷′ 𝑇.
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1 Distributions

1.4 Dérivation des distributions

La propriété essentielle des distributions est
qu’elles sont indéfiniment dérivables et que toutes
les dérivés sont des distributions. Ce qui rend
l’utilisation des distributions très commode.

1.4.1 Définition et propriétés

𝑇 → 𝑇(𝑛) est la dérivée n-ième de la distribution 𝑇.

⟨𝑇′, 𝜑⟩ = −⟨𝑇, 𝜑′⟩ donc ⟨𝑇(𝑛), 𝜑⟩ = (−1)𝑛⟨𝑇, 𝜑(𝑛)⟩

Propriété : ∀𝜃 de classe 𝐶∞, (𝜃𝑇)′ = 𝜃′𝑇 + 𝜃𝑇′.

Démonstration : ⟨(𝜃𝑇)′, 𝜑⟩ = −⟨𝜃𝑇, 𝜑′⟩
= −⟨𝑇, 𝜃𝜑′⟩ = −⟨𝑇, (𝜃𝜑)′ − 𝜃′𝜑⟩ = ⟨𝜃𝑇′ + 𝜃′𝑇, 𝜑⟩

Primitive : 𝑇 est une primitive de 𝑆 ⟺ 𝑇′ = 𝑆.

1.4.2 Exemples

Soit 𝑓 ∈ ℒ1
𝑙𝑜𝑐 telle que 𝑓 soit dérivable et 𝑓 ′ ∈ ℒ1

𝑙𝑜𝑐 et
𝑇𝑓 = 𝑓 la distribution associée.

Par une intégration par parties,

∀𝜑 ∈ 𝒟, ⟨𝑇′
𝑓 , 𝜑⟩ = −⟨𝑇𝑓 , 𝜑′⟩ = ⟨𝑇𝑓 ′ , 𝜑⟩

1.4.2.1 Dérivée de l’échelon d’Heaviside

L’échelon d’Heaviside 𝑢 est localement sommable.

∀𝜑, ⟨𝑇𝑢′ , 𝜑⟩ = −⟨𝑇𝑢, 𝜑′⟩ = 𝜑(0) = ⟨𝛿, 𝜑⟩

1.4.3 Dérivée de la distribution de Dirac

⟨𝛿′, 𝜑⟩ = −⟨𝛿, 𝜑′⟩ = −𝜑′(0)

En généralisant : ⟨𝛿(𝑘), 𝜑⟩ = (−1)𝑘𝜑(𝑘)(0)

Étude de 𝑥𝛿′ = 𝑇𝑥𝛿′. Cette fonction est localement
sommable car 𝑥 est 𝐶∞.

⟨𝑥𝛿′, 𝜑⟩ = −𝜑(0) = −⟨𝛿, 𝜑⟩

1.4.4 Convergence dans 𝒟 ′ et dérivation

Soit {𝑇𝑛}𝑛 qui tend vers 𝑇. Alors {𝑇(𝑘)
𝑛 }𝑛 tend vers

𝑇(𝑘), on peut permuter limite et dérivation avec les
distributions plus simplement qu’avec les fonctions.

Démonstration : −⟨𝑇′
𝑛, 𝜑⟩ = ⟨𝑇𝑛, 𝜑′⟩ tend vers

⟨𝑇, 𝜑′⟩ = −⟨𝑇′, 𝜑⟩ Donc {𝑇𝑛}𝑛 tend vers 𝑇.

1.4.5 Dérivée d’une fonction discontinue

Soit 𝑓 une fonction continue et dérivable sauf en
𝑥 = 𝑥0 avec une discontinuité de première espèce
(par exemple continue sauf en un point où elle n’est
continue qu’à droite).

𝑓 ′ existe sauf en 𝑥0. 𝑇{𝑓 ′} est la distribution associée
à 𝑓 ′ au sens classique des fonctions. La hauteur de
la discontinuité est 𝜎0.

En découpant l’intervalle d’intégration,

⟨(𝑇𝑓 )′, 𝜑⟩ = ... = ⟨𝑇{𝑓 ′}, 𝜑⟩ + 𝜎0⟨𝛿𝑥0
, 𝜑⟩

Donc 𝑓 ′ = {𝑓 ′} + 𝜎0𝛿𝑥0
.

On peut ajouter plus de dirac pour généraliser.
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1.5 Convolution

1.5 Convolution

1.5.1 Convolution de fonctions

Voir TD

1.5.2 Convolution de deux distributions

Définition : sous réserve d’existence, le produit de
convolution de deux distributions S et T, noté 𝑆 ∗ 𝑇,
est défini par :

∀𝜑 ∈ 𝒟, ⟨𝑆 ∗ 𝑇, 𝜑⟩ = ⟨𝑆, ⟨𝑇, 𝜑−𝑥⟩⟩

On note aussi ⟨𝑆(𝑥) 𝑇(𝑦), 𝜑(𝑥 + 𝑦)⟩ℝ2 .

On utilise le théorème de Fubini pour montrer que
𝑇𝑓 ∗ 𝑇𝑔 = 𝑇𝑓 ∗𝑔.

1.5.3 Existence

Support d’une distribution :

Soit 𝜔 un ensemble ouvert de R. On dit que T est
nulle sur 𝜔, si 𝜑 ∈ 𝒟 ayant son support contenu
dans 𝜔, on ⟨𝑇, 𝜑⟩ = 0.

Le support de 𝑇 est le complémentaire de la réunion
de tous les ouverts sur lesquels la distribution 𝑇 est
nulle. Le support est fermé.

Conditions d’existence :

Même si 𝜑(𝑥) est à support borné dans R, 𝜑(𝑥 + 𝑦)
n’est pas pour autant à support borné dans ℝ2.
Cette fonction est dans une bande.

𝑆∗𝑇 n’existe pas nécessairement. Si 𝑆 et 𝑇 sont telles
que (𝑥 + 𝑦) bornée entraîne 𝑥 et 𝑦 bornées alors le
produit de convolution existe.

1.5.4 Propriétés

Commutatif : 𝑆 ∗ 𝑇 = 𝑇 ∗ 𝑆.

Linéaire : par la linéarité de la distribution.

𝛿 est l’élément neutre du produit de convolution.

1.5.4.1 Associativité

Si les 3 produits 𝑅 ∗ 𝑆, 𝑆 ∗ 𝑇 et 𝑅 ∗ 𝑇 existent, alors
𝑅 ∗ 𝑆 ∗ 𝑇 existe et

𝑅 ∗ 𝑆 ∗ 𝑇 = 𝑆 ∗ (𝑅 ∗ 𝑇) = (𝑅 ∗ 𝑆) ∗ 𝑇 = 𝑅 ∗ (𝑆 ∗ 𝑇)

Si les 3 produits ne sont pas définis, alors dans ça
peut ne pas être vrai.

1.5.4.2 Continuité

Soit {𝑇𝑛}𝑛 une suite de distributions de 𝒟 ′ conver-
geant vers 𝑇 ∈ 𝒟 ′ ayant toutes leur support conte-
nu dans un même ensemble borné et telles que 𝑆∗𝑇𝑛
existe pour tout 𝑛. Alors 𝑆 ∗ 𝑇𝑛 tend vers 𝑆 ∗ 𝑇.

1.5.4.3 Algèbre de convolution

Définition : tout espace vectoriel de distribution
contenant 𝛿 et sur lequel on peut définir le produit
de convolution d’un nombre fini quelconque de dis-
tributions.

Exemples :

• Distributions à support borné ℰ ′

• Distributions à support borné à gauche 𝒟 ′
+

• Distributions à support borné à droite 𝒟 ′
−

Les algèbres de convolution permettent de résoudre
des équations du type 𝐴 ∗ 𝑋 = 𝐵.

Sous réserve d’existence, on note 𝐴∗−1 l’inverse de
convolution de 𝐴 :

𝐴 ∗ 𝐴∗−1 = 𝛿

Pour que l’équation de convolution ait toujours au
moins une solution dans une algèbre de convolu-
tion, il faut et il suffit que 𝐴 possède un inverse 𝐴∗−1

dans l’algèbre.

Dans ce cas 𝐴∗−1 est unique et la solution unique est
donnée :

𝑋 = 𝐴∗−1 ∗ 𝐵 = 𝐵 ∗ 𝐴∗−1

(sinon la solution peut ne pas exister ou seulement
pour certains 𝐵)
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1 Distributions

1.6 Transformée de Fourier

L’idée est de reporter la TF de la distribution sur la
fonction sur laquelle la distribution agit : ⟨𝑇𝐹[𝑇], 𝜑⟩
vers ⟨𝑇, 𝑇𝐹[𝜑]⟩, tout en ayant une définition qui soit
valable pour 𝑇 associé à une bonne fonction.

1.6.1 TF des fonctions

Soit 𝑓 une fonction sur ℝ, à valeurs dans ℝ ou ℂ,
sous réserve d’existence, la TF est définie par :

𝑇𝐹[𝑓 (𝑥)] = ̃𝑓 (𝑉) = ∫
+∞

−∞
𝑓 (𝑥)𝑒−𝑗2𝜋𝑉𝑥 𝑑𝑥

Remarques :

• si 𝑓 ∈ ℒ1 alors la TF existe,
• si 𝑓 ∈ ℒ2 alors la TF existe et ̃𝑓 ∈ ℒ2,
• si 𝑓 ∈ 𝒟 , on est amené à considérer un espace

de fonction test moins restrictif que 𝒟 et tel que
la TF de toute fonction de cet espace soit encore
dans cet espace : stabilité par TF.

Inversion :

𝑇𝐹−1[ ̃𝜑(𝑉)] = ∫ ̃𝜑(𝑉)𝑒𝑗2𝜋𝑉𝑥 𝑑𝑉 = 𝜑(𝑥)

1.6.2 Espace de Schwartz

Espace de Schwartz 𝒮 : l’ensemble des fonctions sur
ℝ à valeurs dans ℝ ou ℂ de classe 𝐶∞, décroissant à
l’infini, ainsi que toutes leurs dérivées, plus vite que
toute puissance de 1

|𝑥| .

∀𝑘 ∈ ℕ, ∀𝑙 ∈ 𝕟, |𝑥|𝑙|𝜑𝑘(𝑥)| → 0

On a 𝒟 ⊂ 𝒮 .

On montre que si 𝜑 ∈ 𝒮 alors 𝑇𝐹[𝜑] = ̃𝜑 existe et
est dans 𝒮 (stabilité par TF).

1.6.3 Convergence dans 𝒮

Déf : une suite de fonctions {𝜑𝑛}𝑛 de 𝒮 converge
dans 𝒮 vers une fonction 𝜑 de 𝒮 si

∀𝑘 ∈ ℕ, ∀𝑙 ∈ ℕ, 𝑥𝑙𝜑(𝑘)
𝑛 (𝑥) → 𝑥𝑙𝜑(𝑘)(𝑥)

On démontre que la TF est un opérateur linéaire et
continu de 𝒮 dans 𝒮 .

Remarque : si 𝜑 ∈ 𝒮 alors 𝜑′ ∈ 𝒮 .

1.6.4 Distributions tempérées

Définition : une distribution tempérée est une fonc-
tionnelle linéaire et continue sur 𝒮 .

𝒮 ′ est ensemble de toutes les distributions sur 𝒮
c’est-à-dire le dual de 𝒮 .

𝒟 ⊂ 𝒮 ⊂ ℰ

ℰ ′ ⊂ 𝒮 ′ ⊂ 𝒟 ′

1.6.5 TF des distributions tempérées

⟨𝑇𝐹[𝑇], 𝜑⟩ = ⟨𝑇, 𝑇𝐹[𝜑]⟩ et
⟨𝑇𝐹−1[𝑇], 𝜑⟩ = ⟨𝑇, 𝑇𝐹−1[𝜑]⟩

Cas particulier important : si 𝑇 est à support borné
𝑇 ∈ ℰ ′ ⊂ 𝒮 ′ alors 𝑇𝐹[𝑇] = ⟨𝑇(𝑥), 𝑒𝑗2𝜋𝑉𝑥⟩

Démo : ⟨𝑇̃𝑓 , 𝜑⟩ = ∫ 𝑓 (𝑥) ∫ 𝜑(𝑉)𝑒−𝑗2𝜋𝑉𝑥 𝑑𝑉 𝑑𝑥 =
∫ 𝜑(𝑉) ∫ 𝑓 (𝑥)... 𝑑𝑥 𝑑𝑉 = ⟨𝑇 ̃𝑓 , 𝜑⟩

1.7 Transformée de Laplace

1.7.1 TL des fonctions

Limite de la TF : pour que la TF existe il faut que
cette fonction décroisse assez vite en ±∞. Idée : mul-
tiplier 𝑓 (𝑥) par 𝑒−𝜎𝑥 pour forcer la décroissance.

𝑇𝐿[𝑓 (𝑥)] = 𝑇𝐹[𝑓 (𝑥)𝑒−𝜎𝑥] = ̂𝑓 (𝑥)

Rq : si 𝑓 est à support borné à gauche alors
]𝜎𝑚𝑖𝑛, +∞[.

1.7.2 TL des distributions

On se limite aux distributions à support borné à
gauche (𝒟 ′

+).

Définition : ∀𝑇 ∈ 𝒟 ′
+, 𝑇𝐿[𝑇] = ⟨𝑇(𝑥), 𝑒−𝑝𝑥⟩ = 𝑇̂(𝑝)

avec 𝑝 = 𝜎 + 𝑗2𝜋𝑉.

10


	Distributions
	Introduction, limite des fonctions, approche physique
	Distributions : définition et exemples
	Espace des fonctions test
	Distributions
	Convergence dans \mathcal{D}
	Exemples

	Opérations élémentaires sur les distributions
	Addition et multiplication
	Translation
	Retournement
	Conjugaison
	Dilatation
	Produit
	Convergence dans \mathcal{D}'

	Dérivation des distributions
	Définition et propriétés
	Exemples
	Dérivée de la distribution de Dirac
	Convergence dans \mathcal{D}' et dérivation
	Dérivée d'une fonction discontinue

	Convolution
	Convolution de fonctions
	Convolution de deux distributions
	Existence
	Propriétés

	Transformée de Fourier
	TF des fonctions
	Espace de Schwartz
	Convergence dans \mathcal{S}
	Distributions tempérées
	TF des distributions tempérées

	Transformée de Laplace
	TL des fonctions
	TL des distributions



