Méthodes numériques

Pierre-Antoine Comby
(d’aprés notes du cours de S. Capdevielle)

22 décembre 2017

Table des matiéres

1 Reésolution de Systémes linéaires

1

Position du probléme L L e e e e e e e
1.1 Pourquoi étudier la résolution de systéme linéaire
1.2 Comment résoudre un systéme de linéaire L Lo
Méthodes directes L
2.1 Résolution de systéme triangulaire oL oL Lo Lo
2.2 Factorisation de matrice L e e e
2.3 Conditionnement de la matrice e
Méthode itératives o o e e e e e e e e e
3.1 Principe e
3.2 Méthode de Jacobio
3.3 Méthode de Gauss-Seidel L
3.4 Méthode de relaxation L L e e e e e e e e
3.5 Critére d’arrét e e e e e

2 Approximation et interpolation

1

Méthode d’interpolation o L e e e e e e e
1.1 Méthode de collocation e
1.2 Interpolation d’éléments finis L e
1.3 Polyndme osculatoire oL
Méthode d’approximations sans coincidence
2.1 Approximation par une droite au sens des moindres carrés
2.2 Généralisation Polynomiale o

3 Recherche de valeurs propres et vecteurs propres

1

Mise en contexte e e e e e e e e e e e e
1.1 Pourquoi s’intéresser au probléeme? L L e
1.2 Exemple flambement d’une poutre L e
1.3 Apercu des méthodes et domaines d’emploi
Méthode de la puissance et puissance inverse e
2.1 Méthode de la puissance o oL e e e e e e e e
2.2 Obtention des modes suivants v Lt e e e e e
2.3 Méthode de la puissance inverse L L Lo
24 Méthode de la puissance inverse avec décalage spectral
2.5 Condition sur la matrice A
Méthode de Jacobi L

Chapitre 1

Résolution de Systémes linéaires

1 Position du probléme

1.1 Pourquoi étudier la résolution de systéme linéaire
Exemple : Travée de pont On cherche & connaitre la déformée v(x) de la poutre. figure La modélisation

physique du probléme donne les équations :

dz? —

{ ETLY = M(z) (%)
v(0) =v(L)=0

résolution par discrétisation spatiale :

d%v Az? d?v 9
v(z; + Az) = v(x;) + Az@(m) + T@(IZ) + o(Az?)
d*v Az? d*v 9
v(x; + Az) = v(z;) — Aa:@(arl) + T@(xl) + o(Az*)
Alors :
@(= v(z; + Az) + v(z; + Ax) — 20(z;)
da2 T Ax?
On obtient donc (x)” :
pylitl T vi-1— 20i _ M,

Az?
Systéme linéaire a résoudre
, 9. — JAzZ? —o(L) =
Vig1 +vim1 — 2v; = M 5Fv(0) = v(L) =0

Soit matriciellement :

- — r 12 T
2 1 0 07w My 55 —vo
1 -2 1 0 0 : :
. Az?
0o .o : vi| | Mi%r
0 ... 0 1 -2 1 : :
R N A 8 |

De fagon générale tout systéme linéaire apres discrétisation conduit & un systéme d’équations linéaires a

résoudre :
AX =B

On considére dans ce cours des systémes dont la solution existe toujours , elle est de plus unique.

1.2 Comment résoudre un systéme de linéaire

On cherche une méthode systématique programmable

2

CHAPITRE 1. RESOLUTION DE SYSTEMES LINEAIRES

Méthode de Cramer En notant A; la j-iéme colonne de A :

Meéthode
o Calculer det(A)
o Vie[l,n]:
I det(A... A;_1|b]Aiy1 ... Ayp)
’ det(A)

On effectue un grand nombre d’opération !

Temps de calcul associé
Pour un supercalculateur 101" FLOP/s

Taille systéme

nb d’opération

temps de calcul

n n!
10 4.108 107s
100 1018 1053%ans

Une meilleur méthode — plus rapide — est nécessaire. Deux alternatives majeurs existent :

e Méthodes directes : repose sur des algorithmes d’inversion compléte de la matrice ou la solution est obtenue
par un nombre fini d’opération élémentaires.

e Méthodes itératives : On tend par approximation successive vers une solution approchée.

2 Meéthodes directes

2.1 Reésolution de systéme triangulaire
2.1.1 systéme matriciel triangulaire inférieur

On souhaitent résoudre LY = B avec :

Ly O 0
I - La1 Lo
0
Lnl Lnn
écriture du systéme
Liyyr = by

Lo1y1 + Looya = by

Solution

i—1
1
Vi€ [1,n],y; = . <bi + E Likyk>
22 k?:1

La résolution du systéme se fait en : Z 1+2 Zz = n? opérations

~—— N——
+ +,%

2.1.2 systéme matriciel triangulaire supérieur

La résolution est identique, mais on "remonte" le systéme :

1 i—1
= Lin <bz + Z Li,n—kyn—k>

k=1

Vi€ [[L n]]a Yn+1—i

Il est rare que le probléme étudié conduisent naturellement a un systéme triangulaire , les calculs sont
cependant peu cotteuz . L’objectif est donc de ramener le probléme a une résolution d’un ou plusieurs systéme
triangulaire

CHAPITRE 1. RESOLUTION DE SYSTEMES LINEAIRES 4

2.2 Factorisation de matrice

2.2.1 Factorisation LU

LY =b
UX =Y

LeT;

On cherche A = LU avec { TeT+

, Ainsi résoudre AX = b est équivalent & {

Définition

On appelle mineur fondamental d’ordre k¥ d’une matrice , le déterminant de la sous-
matrice constituée des k premiéres lignes et colonnes de A.

Proposition

Pour A € GL,(K),3'L,U € T;f x T,; ou L est & diagonale unité,

T
si et seulement si tous les mineurs fondamentaux de A sont non nuls.

Méthode de construction : Pivot de gauss
air a2

on considére la matrice A = | a9 - La i-éme ligne a I’étape k devient donc :

a(kfl)
k k—1 ik—1 (k=1
Lz(‘ e LE /- a(kfl) Lg)

kk
On adonc A™ = EM™ g1 40
~ —_—
Tsup Tin f,diag unitaire
n n n
Remarque: On effectue de l'ordre de Z Z 1+ Z 2| =0(n?).
k=1 i=k+1 =k
—_~—~——
etape ligne =+,col

La méthode de résolution est donc trés efficace (le plus long étant la factorisation). Dans le cas d’un second
membre variable on peux conserver la décomposition.

Temps de calcul associé
Pour un laptop 10° FLOP/s

Taille systéme | nb d’opération | temps de calcul (laptop)
3

n n
100 109 < 1s
10 000 1012 1 min

2.2.2 Décomposition de Cholesky

Proposition
Soit A € S;7* (symétrique , définie positive) .
Il existe une unique matrice L € T} tel que :

A=LL"

Démonstration : existence par récurrence ; unicité prouvé |

Construction de I’algorithme de calcul de L

Lis = \/Asi — > 1

Vie[l,n],7>1i: i
Ltml. g { Lji= 15 (An‘ - Y Liijk)

CHAPITRE 1. RESOLUTION DE SYSTEMES LINEAIRES 5

2.2.3 Cas des matrices bandes

Dans le cas (fréquent) ou A = |*.. -.. .| On a pas besoin de stocker les cotés de la matrice et on

effectue moins d’opération. Il faut tout de méme avoir la bande entiérement définie (méme si elle contient des
76r08).
2.3 Conditionnement de la matrice
2.3.1 Propagation d’une perturbation du 2nd membre

Les méthodes directes pour résoudre AX = B sont exactes. Cependant la résolution numérique d’un systéme
linéaire peux étre différente (erreur d’arrondi, modification du 2nd membre/matrice)

Exemple:
2.3.2 Quantification de I’influence

On note X 4 dXs solution approché du systéme suite & b + b
AX =b= A(X +6X)=0b+0b

ASX = 6B
[[< [l A][l
ol < 1Al
lax eIl < ANIIA= [lsb]l]1X |
lloX1l _ 1, 19o]]
< |A|A-

Pour des erreur numériques :
(A4+6A)((X +6X)=0b
AdX +0AX +0X6A=0
05X = —AT1A(X +6X)

[0A]
I6X 1 < IANA™ I S T4 X +0X]|
Xl 1y 10 A]
Alll|A~
2% < lANAT
2.3.3 Conditionnement
On défini Cond(A) = ||A||||A7!|| qui donne une indication sur la sensibilité¢ de la matrice aux erreurs. Il

dépend cependant de la norme utilisé.
Les méthode directes sont rapide mais nécessite de stocker des (grandes) matrices en mémoires.

normes de matrice

[AXT]p

14l = max
Tox# |IX],

on peux montrer que :

[Ally = max Z\aul

1<]<n

1Al

p(AT A)

[Allo = max Z\aul

1<ji<n

CHAPITRE 1. RESOLUTION DE SYSTEMES LINEAIRES 6

3 Meéthode itératives

3.1 Principe

On cherche maintenant & résoudre le systéme AX=Db par approximation successives de la solution X*. On
construit une suite de vecteur (X(¥)) telle que (X(*)) ——— X* .

k——+oo
Meéthode
On écrit :
A =M — NAvec M € GL,(R)
AX=(M-N)X+b
MX=b+NX
x(k+1) _ M_l(b—l—NX(k)

Convergence

On défini erreur par rapport & la solution exacte :
pF) = x* — x (k)
p(kJrl) - X* X(k+1)
p*H) = x* - M~ (b + NX®
pFH) = MTIN(X* — XF) - MTINX* — M71X* + X*

=0 car sol exacte

p*FD) = (MIN)kp©)

On a donc convergence ssi (M ~'N)¥ ——— 0.
k— o0

Proposition (Condition de convergence)

La méthode itérative décrite par X *+1) = M=Y(b+ NX®) converge pour tout X (©)
ssi

p(M™'N) =sup Sp(MN) < 1
RY

3.2 Meéthode de Jacobi

Construction de 1’algorithme

On pose M = D = diag(A) on a donc :

1 n
wgk) = — bl — Zaijlék)
j=1

(27} ‘
J#i
Convergence
Proposition
Si A est & diagonale strictement dominante i.e :
n
|aii| > Zj:l |ai

Vi, d ou
lajj| > > i=1 lal
J#i

, alors la méthode de Jacobi converge pour tout X () .

Démonstration : Laissé au lecteur , utilisé le théoréme de Brown et la norme infini de matrice. |

CHAPITRE 1. RESOLUTION DE SYSTEMES LINEAIRES 7

3.3 Meéthode de Gauss-Seidel
Principe et construction

On améliore la méthode de Jacobi en réutilisant les termes déja calculés :

i—1 n
k+1) _ L[, (k+1) (k)
x; = a—ii b; — Za”xj — Z Qi T;
j=1 j=i+1
La méthode de Gauss-Seidel revient & appliquer la méthode de Jacobi avec M = D + A; Avec A =

Ay
D

Ar

par rapport a Jacobi

e converge plus vite

e utilise moins de mémoire

Convergence
Proposition
e Si A est a diagonale dominante (strictement) par ligne alors la méthode G-S
converge

e Si A€ S T(R) Alors la convergence est assurée

3.4 Méthode de relaxation

on améliore la vitesse de convergence de G-S grace a 'introduction de w # 0 et on prend :

() ()0

M N

w > 1 (sur relaxation)

. de telle sorte & accélérer la
w < 1 (sous relaxation)

La convergence est pilotée par p(M~1N) on choisi {

convergence de la méthode (En pratique 0 < w < 2)

Algorithme

3.5 Critére d’arrét

e Le critére idéal est défini & partir de la solution exacte || X* — X*)|| < €

¢ HX(k'+1) _x) I

e On peux fixer un critére sur I’écart relati X

<€
e Critére peu coiiteux
e ne controle pas l’erreur absolue de la méthode (CV ver une fausse solution possible)

e On peux comparer ||[AX*) —p|| a0, et définir de méme un seuil, on a cette fois si une convergence vers
la bonne solution.

Chapitre 2

Approximation et interpolation

Introduction

On souhaite calculer la valeur/dérivée d’une fonction f en certains points. Dans le contexte ou cette fonction
est difficile & manipuler ou alors connue qu’en certains points, il faut passer par une approximation de f.

1 Meéthode d’interpolation

1.1 Meéthode de collocation

La fonction d’interpolation F coincide avec la fonction f en N + 1 points (zg...xx) ou f est connue.

1.1.1 Forme polynomiale

On approxime f par F | polynémiale :

N
F(z) = Z = qpa®
k=0

Or Vj € [0,N], F(z;) Zg:o = quf = f(z;) = f;. On a un systéme linéaire d’équation :

1 oz ... af) do fo
1 z o

1 :]

1 oy ... af an fn

Oun résout le systéme linéaire (Vandermond) et on obtient I'interpolation.

1.1.2 Interpolation de Lagrange
On approxime f par la somme de polynomes de degré N :
N N
Ly = = et F(x) = L
K ka_wj (2) Z:fk k()
j=0 k=0
J#k

En effet Li(I‘j) = 5ij

1.1.3 Limite de 'interpolation polynomiale

e Le cott de calcule est grand pour N grand .
e Difficulté de représentation de la fonction & approximer entre les points de collocation.
e Apparition d’instabilité (diverge de Runge)

= Adapté pour N petit, ou avec une approximation par morceau.

CHAPITRE 2. APPROXIMATION ET INTERPOLATION 9

1.2 Interpolation d’éléments finis
N + 1 points sont connus , on cherche un assemblage de fonction aux variation simple (linéaire, définis par

morceaux ...)
Pr(;) = O,
{ ¢r () linéaire par morceau

Alors

N

F2) =Y fun (@)

k=0

x0=0 x1 x2 x3 x4 x5=1

FI1GURE 2.1 — Représentation des ¢y, et de leur somme simple

Equation des ¢y,

or(r) = — (=) 4 1 gur [, Tpt1]

Tht1—Thk

{ o) = o= sur [zg_1, 73]

Remarque: Avec cette méthode "augmentation du nombre de point est aisée.

1.3 Polyn6éme osculatoire

En plus de la coincidence de F'(z;) = f; on cherche la coincidence des m premiéres dérivées.

1.3.1 Cas des Polynémes d’Hermite

F(zr) = kaUk + Zf;@vk

Avec
{ Up = (1 — 2L, (2))(x — zx) Li(2)?
Vk = (J) — xk)Lk(aj)Q
up(x;) = Ok;
c e) ug () =0V
Qui vérifie : on(e)) = OV
vy, (75) = Ok;

2 Meéthode d’approximations sans coincidence

2.1 Approximation par une droite au sens des moindres carrés

f—P(x)=q0+qz
On veux minimiser ’erreur au sens des moindres carrés :

N

S(go, 1) =Y (g0 + qra; — fi)?

=0

CHAPITRE 2. APPROXIMATION ET INTERPOLATION

Ce qui revient un probléme de minimisation :

b = 23 (g0 + @1z — i) =0
gqul =23 g wilqo + quwi — fi) =0
D’ou le systéme :
N N N
Z]{[:o 1 Z}V:o qi {(Io} _ 21:\?:0 Ji
dicoTi Dizo | a Yo fixi
2.2 Généralisation Polynomiale
On prend cette fois
P(z) = Z gix'
i=0
On minimise donc
N n 2
S(Qoa-u,qn):Z(qwi—fz’)
§=0 \i=0

n

ie :
N
5 233 gt - fat =0

Iqp. j=0i=0

10

Chapitre 3

Recherche de valeurs propres et vecteurs
propres

1 Mise en contexte

1.1 Pourquoi s’intéresser au probléme ?
1.2 Exemple flambement d’une poutre

1.3 Apercu des méthodes et domaines d’emploi
e Déterminer les racines du polynéme caractéristiques
e Manque d’efficacité pour de grandes valeurs de n
e n ~ 5 — 10 en pratique
e Méthode itérative
e Puissance / Puissance inverse
e Jacobi

e Householder

2 Meéthode de la puissance et puissance inverse

On prend A inversible réelle et diagonalisable, de valeurs propres distinctes : |[A1| < ...|\,|.les vecteurs

propres forment une base vy ... v}

2.1 Méthode de la puissance

Permet de trouver une approximation de (A, v};)

Algorithme

On initialise VTSO) de norme 1 . A chaque itération :

7Z = AV, (k)
(k+1) _ _Zz
Yn TR
A =121
Arrét quand)\, n’évolue (presque plus).
L’algorithme converge bel et bien :
Démonstration :
w AVETY ARy
B A N O

11

CHAPITRE 3. RECHERCHE DE VALEURS PROPRES ET VECTEURS PROPRES 12

On note VWEO) = > ;] dans la base des vecteurs propres. d’oil :

N
ARV = Z a; A vr

i=1
N

= Zai)\fvf
i=1

Alors
(k) _ AkV»,EO) an)\]flvfl
ARV koo fandl]
Le vecteur Vn(’“) s’aligne donc dans la direction de V;,. |

Remarque: Si o, = 0 en théorie on récupére alors A,_1 et v,_1 mais par approximation numérique on
ressort de cette convergence.
signe de A\, :

e si le résultat change de signe & chaque itération : A\, < 0 (on fait le test sur le produit scalaire de deux
itérations du vecteur propre)

e gsinon A\, >0

2.2 Obtention des modes suivants

On parle de déflation orthogonale :
e On choisi un vecteur d’initialisation Véo) Ly

e On applique la méthode des puissance en ré-orthogonalisant & chaque itération :

Vi ValiVa

(k+1)" _ y/k+1
e A

n—1

2.3 Meéthode de la puissance inverse

e Permet de déterminer les valeurs propres minimales
e Beaucoup d’application concréte.

e On applique la méthode vu en 2.2 4 A™! :

Meéthode

On initialise Vn(o) de norme 1 . A chaque itération :

On résout AZ = Vl(k)

Vékﬂ): Z
(k1) P
AT =

Arrét quand)\, n’évolue (presque plus).

2.4 Meéthode de la puissance inverse avec décalage spectral

Contexte : on cherche la valeur propre la plus proche d’un nombre p donné.
On applique la méthode de la puissance inverse &

B=A+ul,

CHAPITRE 3. RECHERCHE DE VALEURS PROPRES ET VECTEURS PROPRES 13

2.5 Condition sur la matrice A
e puissance
e Adz
e valeurs propres distinctes 2 4 2 .
= Les vecteurs propres forment une base de R"
e Déflation orthogonale
e Si A est symétrique, les vecteurs propres sont orthogonaux on applique la méthode tel quelle.

e SI A n’est pas symétrique, il faut passer par la base duale :
si on note U; les vecteurs propres de A, la base duale V; est définie par V;"U; = §;;. On construit
alors une "matrice de déflation" ayant les mémes vecteurs propres et valeurs propre que A :

B=A-)\UV,

3 Méthode de Jacobi

e Méthode itérative pour approcher simultanément toutes les valeurs propres de A.

e Il est nécessaire que A soit symétrique.

La méthode consiste & diagonaliser A de maniére itérative par une séquence de transformation orthogonales
(matrice de rotation). On construit une suite matrice (A*)) telle que limy,_,oo A®) = diag(\1, ..., \,). A chaque
itération : AK+TL = quA(k)qu

Construction de R,

Idée en 2D : On part de la matrice de rotation élémentaire :

cos) —sin6
sinf cosf

D’ou la transposée de la matrice de rotation élémentaire R, (matrice de GIVENS)

1

cos sin 6

—siné sin 6

1

La transformation quAqu affecte seulement les lignes et les colonnes de A . On va se sortir de cette
transformation en réglant ¢ pour annuler le terme Ap, de A :

B =R} AR,

Bpg = (cosO[ligne p de A] —sinf[ligne g de A]) (Rq>

Comme A est symétrique :
(¥) Bpg = cosfsinfA,, — cosfsinfA,, + cos? § —sin 0 A,,

e si Ay =0 on prend 6 =0

DU R W N

CHAPITRE 3. RECHERCHE DE VALEURS PROPRES ET VECTEURS PROPRES 14

e sinon On cherche 6 tq B,g = 0 On divise () par cosfsin 6

cosf sinf
qu:App_Aqq+ (sinﬂ_cosG)qu:O

App — Agq + (m —tanf)A,, =0
tan29+wtan9—1:0
Pq

On résout donc (pour t) :
2+t —1=0

Alors on a :)

cost = v1+tan? 0
sinf = cosftand

e Choix du terme Ay, & annuler : On peux montrer qu’a chaque étape k le choix optimal des indices p et ¢
est donnée par : Ag;) = SUD;; \Aff) |.Mais la recherche de ce maximum est cotiteuse (O(n?))

Algorihtme de Jacobi

Pour chaque ligne i de A (1 & n-1)
On pose p=i ; q=i+l

tant que Y. |A;[?)'/2> ¢

pour p-1 a n-1:

pour g=p+l1 a n

-- calcul de 7,t

-- calcul de \cos\theta et \sin\theta
-- calcul de $R_{pq}~TAR_{pq}

O~ O ULk W

I R e
0~ O Ui WNHHE OO

O © 00O TR W

—_

Annexe A

Code python

1 Méthodes directes
1.1 Décomposition LU
Décomposition LU
def decomp_LU(A): # les mineurs fondamentaux de A sont tous non nuls
Initialisation
n=1len (A)
U=np.zeros ((n,n))
L=np.eye (n)
U[0,0]1=A[0,0]
Remplissage de U et L selon l’algorithme fourni
for j in range(1l,n):
U[0,jl=A[0,]]
L[j,01=A[j,0]1/A[1,1]
for i in range(1l,n-1):
Uli,i]=A[i,i]- sum([L[i,k]*U[k,i] for k in range(i)])
for j in range(i,n):
U[i,jl=A[i,jl-sum([L[i,k]1*U[k,j] for k in range(i)])
L[j,il=(A[j,i]-sum([L[i,k]1*U[k,j] for k in range(i)]))/U[i,il
U[-1,-1]1=A[-1,-1]1- sum([L[-1,k]*U[k,-1] for k in range(n)])
return L,U
1.2 Décomposition de Cholesky
Cholesky
def decomp_cholesky(A): # est symétrique positive

initialisation
n=len (A)
L=np.zeros ((n,n))
\# Remplissage de L
for i in range(m):

L[i,i]l=np.sqrt(A[i,i]-sum([L[i,k]**2 for k in range(i)]))

for j in range(i,n):

L[j,il=(A[j,i]-sum([L[i,k]*L[j,k] for k in range(i)]))/L[i,il]

return L

15

DU W N

TR W N

0~ O Ui W N

[R Y
B wWw N = O ©

ANNEXE A. CODE PYTHON

1.2.1

Application a la résolution de systéme linéaire

Résolution de systéme triangulaire inférieur

16

def

resol_Tinf (B,d):
n=len(d)
y=np.zeros (n)
for i in range(mn):
y[il=(d[i]l-sum([B[i,k]*d[k] for k in range(i)]))/B[i,il]
return y

Résolution de systéme triangulaire supérieur

def

resol_Tsup(C,e):
n=len (e)
y=np.zeros (n)
for i in range(mn-1,-1,-1):
y[il=(e[il-sum([C[i,k]1*y[k] for k in range(i,n)]1))/C[i,i]
return y

Résolution par la décomposition LU

def

resol_LU(A,b):
L,U=decomp_LU(A)
return resol_Tsup(U,resol_Tinf (L,b))

Résolution par la décomposition de Cholesky

def

resol_Cholesky (A,b):
L=decomp_cholesky (A)
return resol_Tsup(L.transpose() ,resol_Tinf (L,b))

Méthodes indirectes

def

def

norme (X) :

n=1len (X)

return sum([X[i]**2 for i in range(n)])**(1/2)

jacobi_absolu(A,b):

n=len (A)

X=2%np.ones (n)

critere_arret_residu_absolu=0.001

residu=np.dot (A,X)-b

while norme (residu) > critere_arret_residu_absolu:
for i in range(m):

X[il=(b[i]l-sum([A[i,j]1*X[j] for j in range(mn) if i'!'=3j]1))/A[i,i]

residu=np.dot (A,X)-b
print (X)
return X

= O © 00O Uk W

—

= O © 00O Uk W

—

0~ O T W N

= e
B wWw NN = OO

ANNEXE A. CODE PYTHON

2.1 méthode de Jacobi avec critére relatif

17

def jacobi_relatif (A,b):

n=len (A)

X=np.ones (n)

X2=np.ones (n) *2

critere_arret_residu_relatif=0.001

while norme (X-X2)/norme(X) > critere_arret_residu_relatif:
X=cp.deepcopy (X2)
for i in range(mn):

X2[i]l=(b[i]-sum([A[i,jl*X2[j] for j in range(m) if i'=j]1))/A[i,i]

residu=norme (X-X2) /norme (X)

return X

2.2 méthode de Gauss-Seidel

def gs(A,b):
n=1len (A)
X2=2*np.ones (n)
X=np.ones (n)
critere_arret_residu_gs=0.1
while norme(np.dot(A,X2)-b) > critere_arret_residu_gs:
X=cp.deepcopy (X2)
for i in range(mn):
X2[i1=(b[i] - sum([A[i,jl*X2[j] for j in range(n) if j<il)
- sum([A[i,jl*X[j] for j in range(m) if j>i]))/A[i,i]
return X2

2.3 Meéthode de relaxation

def relaxation(A,b,omega):
assert omega!=0
n=1len (A)
X2=2*np.ones (n)
X=np.ones (n)
critere_arret_residu_relaxation=0.1
residu=np.dot (A,X2)-b
while norme(residu) > critere_arret_residu_relaxation:
X=cp.deepcopy (X2)
for i in range(m):
X2[i]l=(omega*(b[i] - sum([A[i,jl*X2[j] for j in range(n) if j<il)
- sum([A[i,jl*X[j] for j in range(m) if j>il))/A[i,il)
+ (1-omega) *X[i]
return X2

0~ O T W N

[S e R W
© 00 DTk W~ OO

0~ O T W N

[I R N R N R e e e R e O
DO R WD RO OO ULk WN - O©

ANNEXE A. CODE PYTHON

18

3 Recherche de valeurs propres et vecteurs propres
recherche des éléments propre minimaux
def puissance_inv(A,eps=1e-5):
n=1len (A)
V=np.ones (n)/np.sqrt(n)
Z=np.linalg.solve(A,V)
V=Z/norme2 (Z) #Vecteur propre
vpr=1/norme2(Z) #valeur propre
ecart=2%*eps
while abs(ecart) > eps:
vpr_prec= vpr
V_prec=deepcopy (V)
Z=np.linalg.solve(A,V)
V=Z/norme2 (Z)
vpr=1/norme2 (Z)
ecart=abs (vpr) -abs (vpr_prec)
ps=sum ([V[k]*V_prec[k] for k in range(len(V))])
if ps <0
return (-1)*vpr, V
return vpr, V
recherche par déflation orthogonale
def defla_orth(A,l_proj,eps=le-5):

def orthog(V,1l_proj):

ortho=0
for vec in 1l_proj:
ortho -= np.dot(np.dot(np.transpose(vec),V),vec)

/np.dot (np.transpose (vec) ,vec)
return V-ortho
n=1len (A)
V=np.ones (n) /np.sqrt(n)
V=orthog(V,1l_proj)
Z=np.linalg.solve (A,V)
V=Z/norme2 (Z)
vpr=1/norme2 (Z)
ecart=2%*eps
while abs(ecart) > eps:
Vpr_prec= vpr
V_prec=deepcopy (V)
Z=np.linalg.solve(A,V) #plus rapide que LU
V=Z/norme2 (Z)
V=orthog(V,1l_proj)
vpr=1/norme2 (Z)
ecart=abs (vpr) -abs (vpr_prec)
ps=sum ([V[k]1*V_prec[k] for k in range(len(V))])
if ps <O
return (-1)*vpr,V
return vpr, V

ANNEXE A. CODE PYTHON

recherche de tous les élements propres d’une matrice en partant des plus petits

1 def puissance_inv_tot(A,N,eps=1le-5):

2 """ Détermine les N premiéres valeures propres de A """
3 n=1len(A)

4 assert N <= n, "nombre de valeur demandée supérieur a la taille de la matrice"
5 valpr=[]

6 vecpr=[]

7 val ,vec=puissance_inv (4)

8 valpr.append(val) ;vecpr.append(vec)

9 for i in range(N-1):

10 val ,vec=defla_orth(A,vecpr)

11 valpr.append(val)

12 vecpr .append (vec)

13 return valpr,vecpr

