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Chapitre 1

Résolution de Systèmes linéaires

1 Position du problème

1.1 Pourquoi étudier la résolution de système linéaire

Exemple : Travée de pont On cherche à connaître la déformée v(x) de la poutre. �gure La modélisation
physique du problème donne les équations :{

EI d2v
dx2 = M(x) (∗)

v(0) = v(L) = 0

résolution par discrétisation spatiale :

v(xi + ∆x) = v(xi) + ∆x
d2v

dx2
(xi) +

∆x2

2

d2v

dx2
(xi) + o(∆x2)

v(xi + ∆x) = v(xi)−∆x
d2v

dx2
(xi) +

∆x2

2

d2v

dx2
(xi) + o(∆x2)

Alors :
d2v

dx2
(xi) =

v(xi + ∆x) + v(xi + ∆x)− 2v(xi)

∆x2

On obtient donc (∗)′ :
EI

vi+1 + vi−1 − 2vi
∆x2

= Mi

Système linéaire à résoudre{
vi+1 + vi−1 − 2vi = Mi

∆x2

EI v(0) = v(L) = 0

Soit matriciellement : 

−2 1 0 . . . . . . 0
1 −2 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
0 . . . 0 1 −2 1
0 . . . . . . 0 1 −2





v1

...
vi
...
...

vn−1


=



M1
∆x2

EI − v0

...
Mi

∆x2

EI
...
...

Mn
∆x2

EI − vn


De façon générale tout système linéaire après discrétisation conduit à un système d'équations linéaires à

résoudre :
AX = B

On considère dans ce cours des systèmes dont la solution existe toujours , elle est de plus unique.

1.2 Comment résoudre un système de linéaire

On cherche une méthode systématique programmable
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CHAPITRE 1. RÉSOLUTION DE SYSTÈMES LINÉAIRES 3

Méthode de Cramer En notant Aj la j-ième colonne de A :

Méthode

• Calculer det(A)

• ∀i ∈ J1, nK :

xi =
det(A . . . Ai−1|b|Ai+1 . . . An)

det(A)

On e�ectue un grand nombre d'opération !

Temps de calcul associé :
Pour un supercalculateur 1017FLOP/s

Taille système nb d'opération temps de calcul
n n !
10 4.106 107s
100 10158 10134ans

Une meilleur méthode � plus rapide � est nécessaire. Deux alternatives majeurs existent :

• Méthodes directes : repose sur des algorithmes d'inversion complète de la matrice ou la solution est obtenue
par un nombre �ni d'opération élémentaires.

• Méthodes itératives : On tend par approximation successive vers une solution approchée.

2 Méthodes directes

2.1 Résolution de système triangulaire

2.1.1 système matriciel triangulaire inférieur

On souhaitent résoudre LY = B avec :

L =


L11 0 . . . 0

L21 L22
. . .

...
...

. . . 0
Ln1 . . . . . . Lnn


écriture du système 

L11y1 = b1
L21y1 + L22y2 = b2
...
Ln1y1 + · · ·+ Lnnyn = bn

Solution

∀i ∈ J1, nK, yi =
1

Lii

(
bi +

i−1∑
k=1

Likyk

)

La résolution du système se fait en :
∑

1︸ ︷︷ ︸
÷

+ 2
∑

i︸ ︷︷ ︸
+,×

= n2 opérations

2.1.2 système matriciel triangulaire supérieur

La résolution est identique, mais on "remonte" le système :

∀i ∈ J1, nK, yn+1−i =
1

Lii

(
bi +

i−1∑
k=1

Li,n−kyn−k

)

Il est rare que le problème étudié conduisent naturellement à un système triangulaire , les calculs sont
cependant peu coûteux . L'objectif est donc de ramener le problème à une résolution d'un ou plusieurs système
triangulaire
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2.2 Factorisation de matrice

2.2.1 Factorisation LU

On cherche A = LU avec

{
L ∈ T−n
T ∈ T+

n
, Ainsi résoudre AX = b est équivalent à

{
LY = b
UX = Y

On appelle mineur fondamental d'ordre k d'une matrice , le déterminant de la sous-
matrice constituée des k premières lignes et colonnes de A.

Dé�nition

Proposition

Pour A ∈ GLn(K),∃!L,U ∈ T+
n × T−n où L est à diagonale unité,

si et seulement si tous les mineurs fondamentaux de A sont non nuls.

Méthode de construction : Pivot de gauss

on considère la matrice A =


a11 a12 . . .

a12
. . .

...
. . .

 La i-ème ligne à l'étape k devient donc :

L
(k)
i = L

(k−1)
i −

a
(k−1)
i,k−1

a
(k−1)
kk

L
(k−1)
i

On a donc A(n)︸︷︷︸
Tsup

= E(n) . . . E(1)︸ ︷︷ ︸
Tinf ,diag unitaire

A(1)

Remarque: On e�ectue de l'ordre de
n∑
k=1︸︷︷︸
etape

n∑
i=k+1︸ ︷︷ ︸
ligne

1 +

n∑
j=k

2


︸ ︷︷ ︸

÷,col

= O(n3).

La méthode de résolution est donc très e�cace (le plus long étant la factorisation). Dans le cas d'un second
membre variable on peux conserver la décomposition.

Temps de calcul associé :
Pour un laptop 109FLOP/s

Taille système nb d'opération temps de calcul (laptop)
n n3

100 109 < 1s
10 000 1012 1 min

2.2.2 Décomposition de Cholesky

Proposition

Soit A ∈ S++
n (symétrique , dé�nie positive) .

Il existe une unique matrice L ∈ T+
n tel que :

A = LLT

Démonstration : existence par récurrence ; unicité prouvé

Construction de l'algorithme de calcul de L

∀i ∈ J1, nK, j > i :

{
Lii =

√
Aii −

∑
k=1

Lji = 1
Lii

(
Aii −

∑i−1
k=1 LikLjk

)
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2.2.3 Cas des matrices bandes

Dans le cas (fréquent) ou A =


. . .

. . .
. . .

. . .
. . .

. . .
. . .

 On a pas besoin de stocker les cotés de la matrice et on

e�ectue moins d'opération. Il faut tout de même avoir la bande entièrement dé�nie ( même si elle contient des
zéros).

2.3 Conditionnement de la matrice

2.3.1 Propagation d'une perturbation du 2nd membre

Les méthodes directes pour résoudre AX = B sont exactes. Cependant la résolution numérique d'un système
linéaire peux être di�érente ( erreur d'arrondi, modi�cation du 2nd membre/matrice )

Exemple:

2.3.2 Quanti�cation de l'in�uence

On note X + δXs solution approché du système suite à b+ δb

AX = b⇒ A(X + δX) = b+ δb

AδX = δB

‖δX‖ ≤ ‖A−1‖‖b‖
‖b‖ ≤ ‖A‖‖X‖

‖δX‖‖b‖ ≤ ‖A‖‖A−1‖‖δb‖‖X‖

=⇒ ‖δX‖
‖X‖

≤ ‖A‖‖A−1‖‖δb‖
‖b‖

Pour des erreur numériques :

(A+ δA)((X + δX) = b

AδX + δAX + δXδA = 0

δX = −A−1δA(X + δX)

‖δX‖ ≤ ‖A‖‖A−1‖‖δA‖
‖A‖

‖X + δX‖

‖δX‖
X + δX

≤ ‖A‖‖A−1‖‖δA‖
‖A‖

2.3.3 Conditionnement

On dé�ni Cond(A) = ‖A‖‖A−1‖ qui donne une indication sur la sensibilité de la matrice aux erreurs. Il
dépend cependant de la norme utilisé.

Les méthode directes sont rapide mais nécessite de stocker des (grandes) matrices en mémoires.

normes de matrice

‖A‖p = max
X 6=0

‖AX‖p
‖X‖p

on peux montrer que :

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij|

‖A‖1 =
√
ρ(ATA)

‖A‖∞ = max
1≤j≤n

n∑
i=1

|aij|
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3 Méthode itératives

3.1 Principe

On cherche maintenant à résoudre le système AX=b par approximation successives de la solution X∗. On
construit une suite de vecteur (X(k)) telle que (X(k)) −−−−−→

k→+∞
X∗ .

Méthode

On écrit :

A = M −NAvec M ∈ GLn(R)

AX = (M −N)X + b

MX = b+NX

X(k+1) = M−1(b+NX(k)

Convergence

On dé�ni l'erreur par rapport à la solution exacte :

ρ(k) = X∗ −X(k)

ρ(k+1) = X∗ −X(k+1)

ρ(k+1) = X∗ −M−1(b+NX(k)

ρ(k+1) = M−1N(X∗ −Xk)−M−1NX∗ −M−1X∗ +X∗︸ ︷︷ ︸
=0 car sol exacte

ρ(k+1) = (M−1N)kρ(0)

On a donc convergence ssi (M−1N)k −−−−−→
k→+∞

0 .

Proposition (Condition de convergence)

La méthode itérative décrite par X(k+1) = M−1(b + NX(k) converge pour tout X(0)

ssi
ρ(M−1N) = sup

|λ|
Sp(MN) < 1

3.2 Méthode de Jacobi

Construction de l'algorithme

On pose M = D = diag(A) on a donc :

x
(k)
i =

1

aii

bi − n∑
j=1
j 6=i

aijx
(k)
j


Convergence

Proposition

Si A est à diagonale strictement dominante i.e :

∀i,


|aii| >

∑n
j=1 |aij |

ou
|ajj | >

∑n
i=1
j 6=i
|aji|

, alors la méthode de Jacobi converge pour tout X(0) .

Démonstration : Laissé au lecteur , utilisé le théorème de Brown et la norme in�ni de matrice.
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3.3 Méthode de Gauss-Seidel

Principe et construction

On améliore la méthode de Jacobi en réutilisant les termes déjà calculés :

x
(k+1)
i =

1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j


La méthode de Gauss-Seidel revient à appliquer la méthode de Jacobi avec M = D + AL Avec A =
. . . AU

D

AL
. . .


par rapport à Jacobi

• converge plus vite

• utilise moins de mémoire

Convergence

Proposition

• Si A est à diagonale dominante (strictement) par ligne alors la méthode G-S
converge

• Si A ∈ S++
n (R) Alors la convergence est assurée

3.4 Méthode de relaxation

on améliore la vitesse de convergence de G-S grâce à l'introduction de ω 6= 0 et on prend :

A =

(
D

ω
−AL

)
︸ ︷︷ ︸

M

(
1− ω
ω

)
(D −AU )︸ ︷︷ ︸
N

La convergence est pilotée par ρ(M−1N) on choisi

{
ω > 1 (sur relaxation)
ω < 1 (sous relaxation)

de telle sorte à accélérer la

convergence de la méthode ( En pratique 0 < ω < 2 )

Algorithme

x
(k+1)
i =

ω

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

+ (1− ω)x
(k)
i

3.5 Critère d'arrêt

• Le critère idéal est dé�ni à partir de la solution exacte ‖X∗ −X(k)‖ < ε

• On peux �xer un critère sur l'écart relatif ‖X
(k+1)−X(k)‖
‖X(k)‖ < ε

• Critère peu coûteux

• ne contrôle pas l'erreur absolue de la méthode (CV ver une fausse solution possible)

• On peux comparer ‖AX(k) − b‖ à 0, et dé�nir de même un seuil, on a cette fois si une convergence vers
la bonne solution.



Chapitre 2

Approximation et interpolation

Introduction

On souhaite calculer la valeur/dérivée d'une fonction f en certains points. Dans le contexte où cette fonction
est di�cile à manipuler ou alors connue qu'en certains points, il faut passer par une approximation de f.

1 Méthode d'interpolation

1.1 Méthode de collocation

La fonction d'interpolation F coïncide avec la fonction f en N + 1 points (x0 . . . xN ) où f est connue.

1.1.1 Forme polynomiale

On approxime f par F , polynômiale :

F (x) =

N∑
k=0

= qkx
k

Or ∀j ∈ J0, NK, F (xj)
∑N
k=0 = qkx

k
j = f(xj) = fj . On a un système linéaire d'équation :


1 x0 . . . xN0
1 x1 xN1

1
...

...
1 xN . . . xNN



q0

...

...
qN

 =


f0

...

...
fN


On résout le système linéaire (Vandermond) et on obtient l'interpolation.

1.1.2 Interpolation de Lagrange

On approxime f par la somme de polynômes de degré N :

Lk =

N∏
j=0
j 6=k

x− xj
xk − xj

et F (x) =

N∑
k=0

fkLk(x)

En e�et Li(xj) = δij

1.1.3 Limite de l'interpolation polynomiale

• Le coût de calcule est grand pour N grand .

• Di�culté de représentation de la fonction à approximer entre les points de collocation.

• Apparition d'instabilité (diverge de Runge)

⇒ Adapté pour N petit, ou avec une approximation par morceau.

8
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1.2 Interpolation d'éléments �nis

N + 1 points sont connus , on cherche un assemblage de fonction aux variation simple ( linéaire, dé�nis par
morceaux ...) {

φk(xj) = δkj
φk(x) linéaire par morceau

Alors

F (x) =

N∑
k=0

fkφk(x)

Figure 2.1 � Représentation des φk et de leur somme simple

Équation des φk {
φk(x) = x−xk−1

xk−xk−1
sur [xk−1, xk]

φk(x) = − (x−xk)
xk+1−xk

+ 1 sur [xk, xk+1]

Remarque: Avec cette méthode l'augmentation du nombre de point est aisée.

1.3 Polynôme osculatoire

En plus de la coïncidence de F (xj) = fj on cherche la coïncidence des m premières dérivées.

1.3.1 Cas des Polynômes d'Hermite

F (x) =
∑

fkUk +
∑

f ′kVk

Avec {
Uk = (1− 2L′k(x))(x− xk)Lk(x)2

Vk = (x− xk)Lk(x)2

Qui véri�e :


uk(xj) = δkj
u′k(xj) = 0∀j
vk(xj) = 0∀j
v′k(xj) = δkj

2 Méthode d'approximations sans coïncidence

2.1 Approximation par une droite au sens des moindres carrés

f −→ P (x) = q0 + q1x

On veux minimiser l'erreur au sens des moindres carrés :

S(q0, q1) =

N∑
i=0

(q0 + q1xi − fi)2
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Ce qui revient un problème de minimisation :{
∂S
∂q0

= 2
∑N
i=0(q0 + q1xi − fi) = 0

∂S
∂q1

= 2
∑N
i=0 xi(q0 + q1xi − fi) = 0

D'où le système : [∑N
i=0 1

∑N
i=0 qi∑N

i=0 xi
∑N
i=0 x

2
i

] [
q0

q1

]
=

[ ∑N
i=0 fi∑N
i=0 fixi

]

2.2 Généralisation Polynomiale

On prend cette fois

P (x) =

n∑
i=0

qix
i

On minimise donc

S(q0, . . . , qn) =

N∑
j=0

(
n∑
i=0

qix
i − fi

)2

ie :
∂S

∂qk
= 2

N∑
j=0

n∑
i=0

(qix
k
j − fi)xkj = 0



Chapitre 3

Recherche de valeurs propres et vecteurs

propres

1 Mise en contexte

1.1 Pourquoi s'intéresser au problème ?

1.2 Exemple �ambement d'une poutre

1.3 Aperçu des méthodes et domaines d'emploi

• Déterminer les racines du polynôme caractéristiques

• Manque d'e�cacité pour de grandes valeurs de n

• n ' 5− 10 en pratique

• Méthode itérative

• Puissance / Puissance inverse

• Jacobi

• Householder

2 Méthode de la puissance et puissance inverse

On prend A inversible réelle et diagonalisable, de valeurs propres distinctes : |λ1| < . . . |λn|.les vecteurs
propres forment une base v∗1 . . . v

∗
n

2.1 Méthode de la puissance

Permet de trouver une approximation de (λn, v
∗
n)

Algorithme

On initialise V (0)
n de norme 1 . À chaque itération :

Z = AVn(k)

V
(k+1)
n = Z

‖Z‖2
|λ(k+1)
n = ‖Z‖2

Arrêt quand λn n'évolue (presque plus).
L'algorithme converge bel et bien :

Démonstration :

V (k)
n =

AV
(k−1)
n

‖AV k−1
n ‖

= · · · = AkV
(0)
n

‖AkV
(0)
n ‖

11
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On note V
(0)
n =

∑
αiv
∗
i dans la base des vecteurs propres. d'où :

AkV (0)
n =

N∑
i=1

αiA
kv∗i

=

N∑
i=1

αiλ
k
i v
∗
i

= αnλ
k
n

(
v∗n +

N∑
i=1

αiλ
k
i

αnλk
n

v∗i

)

Alors

V (k)
n =

AkV
(0)
n

‖AkV
(0)
n ‖

−−−−−→
k→+∞

αnλ
k
nv
∗
n

|αnλk
n|

Le vecteur V
(k)
n s'aligne donc dans la direction de Vn.

Remarque: Si αn = 0 en théorie on récupère alors λn−1 et vn−1 mais par approximation numérique on
ressort de cette convergence.
signe de λn :

• si le résultat change de signe à chaque itération : λn < 0 (on fait le test sur le produit scalaire de deux
itérations du vecteur propre)

• sinon λn > 0

2.2 Obtention des modes suivants

On parle de dé�ation orthogonale :

• On choisi un vecteur d'initialisation V (0)
n ⊥ v∗n

• On applique la méthode des puissance en ré-orthogonalisant à chaque itération :

V
(k+1)′

n−1 = V k+1
n−1 −

V Tn V
k+1
n−1 Vn

V Tn Vn

2.3 Méthode de la puissance inverse

• Permet de déterminer les valeurs propres minimales

• Beaucoup d'application concrète.

• On applique la méthode vu en 2.2 à A−1 :

Méthode

On initialise V (0)
n de norme 1 . À chaque itération :

On résout AZ = V
(k)
1

V
(k+1)
n = Z

‖Z‖2
|λ(k+1)

1 | = 1
‖Z‖2

Arrêt quand λn n'évolue (presque plus).

2.4 Méthode de la puissance inverse avec décalage spectral

Contexte : on cherche la valeur propre la plus proche d'un nombre µ donné.
On applique la méthode de la puissance inverse à

B = A+ µIn
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2.5 Condition sur la matrice A

• puissance

• A dz

• valeurs propres distinctes 2 à 2 .

⇒ Les vecteurs propres forment une base de Rn

• Dé�ation orthogonale

• Si A est symétrique, les vecteurs propres sont orthogonaux on applique la méthode tel quelle.

• SI A n'est pas symétrique, il faut passer par la base duale :
si on note Ui les vecteurs propres de A, la base duale Vi est dé�nie par V Ti Uj = δij . On construit
alors une "matrice de dé�ation" ayant les mêmes vecteurs propres et valeurs propre que A :

B = A− λnUTn Vn

3 Méthode de Jacobi

• Méthode itérative pour approcher simultanément toutes les valeurs propres de A.

• Il est nécessaire que A soit symétrique.

La méthode consiste à diagonaliser A de manière itérative par une séquence de transformation orthogonales
(matrice de rotation). On construit une suite matrice (A(k)) telle que limk→∞A(k) = diag(λ1, . . . , λn). A chaque
itération : A(k+1) = RTpqA

(k)Rpq

Construction de Rpq

Idée en 2D : On part de la matrice de rotation élémentaire :[
cosθ − sin θ
sin θ cos θ

]
D'où la transposée de la matrice de rotation élémentaire Rpq ( matrice de GIVENS)

Rpq =



1
. . .

cos θ sin θ
1 0

. . .
0 1

− sin θ sin θ
1

. . .
1


La transformation RTpqARpq a�ecte seulement les lignes et les colonnes de A . On va se sortir de cette

transformation en réglant θ pour annuler le terme Apq de A :

B = RTpqARpq

Bpq = (cos θ[ligne p de A]− sin θ[ligne q de A])

(
Rq
)

Comme A est symétrique :

(∗) Bpq = cos θ sin θApp − cos θ sin θAqq + cos2 θ − sin2 θApq

• si Apq = 0 on prend θ = 0
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• sinon On cherche θ tq Bpq = 0 On divise (∗) par cos θ sin θ

Bpq = App −Aqq +

(
cos θ

sin θ
− sin θ

cos θ

)
Apq = 0

App −Aqq + (
1

tan θ
− tan θ)Apq = 0

tan2 θ +
Aqq −App

Apq
tan θ − 1 = 0

On résout donc (pour t ) :
t2 + 2ηt− 1 = 0

Alors on a : {
cos θ = 1√

1+tan2 θ

sin θ = cos θ tan θ

• Choix du terme Apq à annuler : On peux montrer qu'à chaque étape k le choix optimal des indices p et q

est donnée par : A(k)
pq = supi 6=j |A

(k)
ij |.Mais la recherche de ce maximum est coûteuse ( O(n2))

Algorihtme de Jacobi

1 Pour chaque ligne i de A (1 à n-1) :

2 On pose p=i ; q=i+1

1 tant que
∑
|Aij |2)1/2 > ε :

2 pour p-1 à n-1:

3 pour q=p+1 à n

4 -- calcul de η, t
5 -- calcul de \cos\theta et \sin\theta

6 -- calcul de $R_{pq}^TAR_{pq}



Annexe A

Code python

1 Méthodes directes

1.1 Décomposition LU

Décomposition LU

1

2 def decomp_LU(A): # les mineurs fondamentaux de A sont tous non nuls

3 # Initialisation

4 n=len(A)

5 U=np.zeros((n,n))

6 L=np.eye(n)

7 U[0,0]=A[0,0]

8 # Remplissage de U et L selon l'algorithme fourni

9 for j in range(1,n):

10 U[0,j]=A[0,j]

11 L[j,0]=A[j,0]/A[1,1]

12 for i in range(1,n-1):

13 U[i,i]=A[i,i]- sum([L[i,k]*U[k,i] for k in range(i)])

14 for j in range(i,n):

15 U[i,j]=A[i,j]-sum([L[i,k]*U[k,j] for k in range(i)])

16 L[j,i]=(A[j,i]-sum([L[i,k]*U[k,j] for k in range(i)]))/U[i,i]

17 U[-1,-1]=A[-1,-1]- sum([L[-1,k]*U[k,-1] for k in range(n)])

18 return L,U

1.2 Décomposition de Cholesky

Cholesky

1 def decomp_cholesky(A): # est symétrique positive

2 # initialisation

3 n=len(A)

4 L=np.zeros((n,n))

5 \# Remplissage de L

6 for i in range(n):

7 L[i,i]=np.sqrt(A[i,i]-sum([L[i,k]**2 for k in range(i)]))

8 for j in range(i,n):

9 L[j,i]=(A[j,i]-sum([L[i,k]*L[j,k] for k in range(i)]))/L[i,i]

10 return L

15
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1.2.1 Application à la résolution de système linéaire

Résolution de système triangulaire inférieur

1 def resol_Tinf(B,d):

2 n=len(d)

3 y=np.zeros(n)

4 for i in range(n):

5 y[i]=(d[i]-sum([B[i,k]*d[k] for k in range(i)]))/B[i,i]

6 return y

Résolution de système triangulaire supérieur

1 def resol_Tsup(C,e):

2 n=len(e)

3 y=np.zeros(n)

4 for i in range(n-1,-1,-1):

5 y[i]=(e[i]-sum([C[i,k]*y[k] for k in range(i,n)]))/C[i,i]

6 return y

Résolution par la décomposition LU

1 def resol_LU(A,b):

2 L,U=decomp_LU(A)

3 return resol_Tsup(U,resol_Tinf(L,b))

Résolution par la décomposition de Cholesky

1 def resol_Cholesky(A,b):

2 L=decomp_cholesky(A)

3 return resol_Tsup(L.transpose (),resol_Tinf(L,b))

2 Méthodes indirectes

1 def norme(X):

2 n=len(X)

3 return sum([X[i]**2 for i in range(n)]) **(1/2)

4 def jacobi_absolu(A,b):

5 n=len(A)

6 X=2*np.ones(n)

7 critere_arret_residu_absolu =0.001

8 residu=np.dot(A,X)-b

9 while norme(residu) > critere_arret_residu_absolu:

10 for i in range(n):

11 X[i]=(b[i]-sum([A[i,j]*X[j] for j in range(n) if i!=j]))/A[i,i]

12 residu=np.dot(A,X)-b

13 print(X)

14 return X
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2.1 méthode de Jacobi avec critère relatif

1 def jacobi_relatif(A,b):

2 n=len(A)

3 X=np.ones(n)

4 X2=np.ones(n)*2

5 critere_arret_residu_relatif =0.001

6 while norme(X-X2)/norme(X) > critere_arret_residu_relatif:

7 X=cp.deepcopy(X2)

8 for i in range(n):

9 X2[i]=(b[i]-sum([A[i,j]*X2[j] for j in range(n) if i!=j]))/A[i,i]

10 residu=norme(X-X2)/norme(X)

11 return X

2.2 méthode de Gauss-Seidel

1 def gs(A,b):

2 n=len(A)

3 X2=2*np.ones(n)

4 X=np.ones(n)

5 critere_arret_residu_gs =0.1

6 while norme(np.dot(A,X2)-b) > critere_arret_residu_gs:

7 X=cp.deepcopy(X2)

8 for i in range(n):

9 X2[i]=(b[i] - sum([A[i,j]*X2[j] for j in range(n) if j<i])

10 - sum([A[i,j]*X[j] for j in range(n) if j>i]))/A[i,i]

11 return X2

2.3 Méthode de relaxation

1 def relaxation(A,b,omega):

2 assert omega !=0

3 n=len(A)

4 X2=2*np.ones(n)

5 X=np.ones(n)

6 critere_arret_residu_relaxation =0.1

7 residu=np.dot(A,X2)-b

8 while norme(residu) > critere_arret_residu_relaxation:

9 X=cp.deepcopy(X2)

10 for i in range(n):

11 X2[i]=( omega *(b[i] - sum([A[i,j]*X2[j] for j in range(n) if j<i])

12 - sum([A[i,j]*X[j] for j in range(n) if j>i]))/A[i,i])

13 + (1-omega)*X[i]

14 return X2
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3 Recherche de valeurs propres et vecteurs propres

recherche des éléments propre minimaux

1

2 def puissance_inv(A,eps=1e-5):

3 n=len(A)

4 V=np.ones(n)/np.sqrt(n)

5 Z=np.linalg.solve(A,V)

6 V=Z/norme2(Z) #Vecteur propre

7 vpr =1/ norme2(Z) #valeur propre

8 ecart =2* eps

9 while abs(ecart) > eps:

10 vpr_prec= vpr

11 V_prec=deepcopy(V)

12 Z=np.linalg.solve(A,V)

13 V=Z/norme2(Z)

14 vpr =1/ norme2(Z)

15 ecart=abs(vpr)-abs(vpr_prec)

16 ps=sum([V[k]* V_prec[k] for k in range(len(V))])

17 if ps <0 :

18 return (-1)*vpr , V

19 return vpr , V

recherche par dé�ation orthogonale

1 def defla_orth(A,l_proj ,eps=1e-5):

2 def orthog(V,l_proj):

3 ortho=0

4 for vec in l_proj:

5 ortho -= np.dot(np.dot(np.transpose(vec),V),vec)

6 /np.dot(np.transpose(vec),vec)

7 return V-ortho

8 n=len(A)

9 V=np.ones(n)/np.sqrt(n)

10 V=orthog(V,l_proj)

11 Z=np.linalg.solve(A,V)

12 V=Z/norme2(Z)

13 vpr =1/ norme2(Z)

14 ecart =2* eps

15 while abs(ecart) > eps:

16 vpr_prec= vpr

17 V_prec=deepcopy(V)

18 Z=np.linalg.solve(A,V) #plus rapide que LU

19 V=Z/norme2(Z)

20 V=orthog(V,l_proj)

21 vpr =1/ norme2(Z)

22 ecart=abs(vpr)-abs(vpr_prec)

23 ps=sum([V[k]* V_prec[k] for k in range(len(V))])

24 if ps <0 :

25 return (-1)*vpr ,V

26 return vpr , V
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recherche de tous les élements propres d'une matrice en partant des plus petits

1 def puissance_inv_tot(A,N,eps=1e-5):

2 """ Détermine les N premières valeures propres de A """

3 n=len(A)

4 assert N <= n, "nombre de valeur demandée supérieur à la taille de la matrice"

5 valpr =[]

6 vecpr =[]

7 val ,vec=puissance_inv(A)

8 valpr.append(val);vecpr.append(vec)

9 for i in range(N-1):

10 val ,vec=defla_orth(A,vecpr)

11 valpr.append(val)

12 vecpr.append(vec)

13 return valpr ,vecpr


