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1 Hypothèse de travail

1.1 Généralités

Signal Grandeur fluctuante en fonction d’une ou plusieurs variable d’évolu-
tion(temps, espace) et qui contient de l’information.

Signal déterministe peut être reproduit à l’identique (ie détermination totale de
l’information)

Bruit Partie du signal ne portant pas d’information.

Définition

1.1.1 Caractérisation des signaux

Figure 1 – Classification continu - discret

1.1.2 signaux déterministes
Proposition

Causalité signal nul pour t < 0 , x∗(t) = x(t).uH(t)
Signal Sinusoïdal x(t) = A cos(2πft+ ϕ)
Sinusoïde discret xn = A cos(πν0n+ϕ) avec ν0 fréquence réduite ∈ [0, 1/2] plus

grande variation possible ( changement de signe).

Bruit x(t) = s(t) + b(t) On défini le Rapport signal bruit RSB = Pinformation

Pbruit
(en

dB).

1.2 Outils mathématiques

Espace des Signaux Espace vectoriel muni d’un produit scalaire et d’une norme déduite du produit
scalaire ( Espace de Banach)
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Produit Scalaire définit la notion d’orthogonalité < x, y >= 0 ⇔ x et y ne partage pas d’informations
communes.

2 Énergie, Puissance et Corrélation

2.1 Énergie et Puissance

• Signal à puissance finie :
L∞(R) = {x : R→ R,mesurable/intégrable, ∃c, |x| < c}

• Soit x ∈ L∞(R)

P = lim
T→+∞

1
2T

∫ T

−T
|x(t)|2 < c2

est bien définie.
• Un signal x est à énergie finie si x ∈ L2

Définition

Remarque: Si E =∞et‖x‖∞ <∞ alors x ∈ L∞ (ou L2
loc).

Proposition
Les espaces des signaux à E <∞ ou P <∞ sont normés :

• E <∞ :

‖x‖ =
√∫

R
|x(t)|2dt

• P <∞ :

‖x‖ =
√

lim
T→∞

1
2T

∫ T

−T
|x(t)|2dt

Remarque: différence entre L2 et L2.

2.2 Concept de corrélation

La corrélation est liée au produit scalaire (partage d’information où non)

Soit x, y à énergie finie :
< x, y >=

∫
R
x(t)y∗(t)dt

Pour des signaux à puissance finie:

< x, y >= lim
T→+∞

1
2T

∫ T

−T
x(t)y∗(t)dt

Définition

Remarque: Dans le cas de signaux à temps discrets :
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E <∞ : < x, y >=
∑

xny
∗
n

P <∞ : < x, y >= lim
k→∞

1
2k + 1

k∑
n=−k

xny
∗
n

2.3 Auto-corrélation

• Pour des signaux à énergie finie:

γx(τ) =
∫
R
x(t)x∗(t− τ)dt

• Dans le cas discret:
γnm =

∑
xnx

∗
n−m

Définition

L’autocorrélation représente la ressemblance avec le même signal décalé.

2.4 Inter-corrélation

• Pour des signaux à énergie finie:

• continue : γxy(τ) =
∫
R
x(t)y∗(t− τ)dt

• discret : γxy(n) =
∑
m∈Z

xmym−n

• Pour des signaux à puissance finie et énergie infinie:

• continue γxy(τ) = lim
T→∞

1
2T

∫ T

−T
x(t)y∗(t− τ)dt

• discret γxy(n) = lim
k→∞

1
2K + 1

K∑
m=−K

xmyy
∗
m−n

Définition

L’intercorrélation mesure la ressemblance entre 2 signaux en décalant l’un par rapport à l’autre et où
la ressemblance maximale est donnée par γxy ≤

√
γx(0)γy(0)

Proposition
• γx et γxy sont paires si x, y ∈ R
• Si x et y sont périodiques de même période γx et γxy le sont de même période.

3 Transformée de Fourier

3.1 Analyse par décomposition orthogonale

On se place dans un espace hilbertien (muni du produit scalaire) on peux approximer les fonctions par
une famille de fonction g(t)n∈Z orthogonale.
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Si cette famille est dense dans l’espace E < ∞ ou P < ∞ ou dans un sous-espace vectoriel de ces
espaces. Alors on a convergence en norme ie :

∀x ∈ L2 :

∥∥∥∥∥∥x−
N∑

n=−N

< x, gn >

< gn, gn >
gn

∥∥∥∥∥∥
2

−−−−−→
N→+∞

0

Si la converge est uniforme (en ‖ ‖∞ ) on a égalité et donc (gn) est une base de l’espace hilbertien.

3.2 Fonction périodique : Série de Fourier

On considère ici l’espace des signaux periodiques de période T et d’énergie finie sur une période L2
[T ]

On le munit du produit scalaire :
< x, y >=

∫
[
T ]x(t)y∗(t)dt

Remarque: Pour les signaux périodique bornés :

lim
τ→∞

1
2τ

∫ τ

−τ
x(t)dt = 1

T

∫
[T ]
x(t)dt

∀N ∈ N on note τN l’espace vectoriel engendré par la famille orthogonale {en}n∈N où
:

en :
{

R −→ C
t 7−→ ej2πnt/T

Définition

∀x ∈ L2([T )], ∃!Sn[x] ∈ τn projection de x sur τn. tel que :‖x− Sn[x]‖2 soit minimale,
avec:

Sn[x] =
N∑

n=−N
αnen

αn = 1
T

∫
[T ]

e−j2πnt/Tdt

Théorème

Démonstration:
‖x− Sn[x]‖22 = ‖x‖22 + ‖Sn‖22 − 2Re(< Sn[x], x >)

Or ‖Sn‖22 =
N∑

n=−N
α2
n < en, en > et < Sn[x], x >=

∑
α∗n < en, en > On pose :

βn = < en, x >

< en, en >
= < en, x

T

Alors :
‖x− Sn[x]‖22 = ‖x‖22 + T

∑
|βn − αn|2 − |βn|2

On a le minimum pour αn = βn .Soit le coefficient de Fourier :

αn = 1
T

∫
[T ]

e−j2πnt/Tdt
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Proposition (Égalité de Parseval)∑
|an|2 = 1

T

∫
|x(t)|2dt

Remarque: Avec cette égalité et le TCD on peux montrer que l’on a convergence de la série de Fourier
en ‖ ‖1 vers x. Peut-on avoir une convergence en norme ‖‖∞ (et donc égalité) ?

Soit la famille des fonctions T-périodique continues.
Alors les fonctions en = ej2πnt/T∀n ∈ Z forment une base de cette famille.

x(t) =
∑
Z
αnen(t)⇔

∑
|an| <∞

Avec:
αn = 1

T

∫
[T ]

e−j2πnt/Tdt

Théorème

Proposition
si x ∈ Ck, k ≥ 2 alors

∑
|an| <∞

Démonstration: IPP et majoration par norme infinie.

3.3 Série de Fourier et distribution

On fait la confusion de notation entre distribution et fonction.

Proposition (Discontinuité de première espèce)
Pour une discontinuité de première espèce à l’instant t : x(t−) 6= x(t+). Alors :

1
2(x(t−) + x(t+)) =

∑
αnen(t)

Il y a création d’un phénomène oscillatoire autour de la discontinuité ( phénomène
de Gibbs).

TF du Dirac

∀ϕ ∈ S , on a :
δ̂(f) =

∫
δ(t)e−jπftdt = 1

Peigne de Dirac

C’est une distribution périodique :

XT (t) =
∑
k∈Z

δ(t− kT )
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Proposition
Soit x ∈ L1

loc

x(t)
∑

δ(t− kT ) =
dist

∑
Z
x(kT )δ(t− xT )

Démonstration: passer par les bonnes fonctions.

Proposition (Formule Sommatoire de Poisson)

X =
∑
k∈Z

δ(t− kT )

= 1
T

∑
ej2πkt/T

Démonstration: Long et chiant.

3.4 Passage de la SF à la TF

On peut interpréter la Transformée de Fourier comme un passage à la limite (de la période) de la SF
pour englober tous les signaux.

x(t) =
∑
Z

αnT ej2πnt/T

T

αn.T =
∫

[T ]
x(t)e−j2πtF

en posant 1
T = ∆F et F = n

T Alors pour F −−−−−→
T→+∞

f et ∆F −−−−−→
T→+∞

df

X(f) = lim
T→+∞

αn.T =
∫
R
x(t)e−j2πft

On défini ainsi la Transformée de Fourier pour les fonctions continues (et les distributions).

3.5 Quelques propriété sur la TF
Proposition (relations fondamentales)

• TF [T (ax)] = 1
|a| T̃

(
ν
a

)
• TF [T (x− a)] = e−j2πνaT̃ (ν)
• TF [ej2πν0xT (x)] = T̃ (ν − ν0)
• TF [T (k)(x)] = (j2πν)kT̃ (ν)
• TF [T̃ (x)] = T (−ν)
• TF [S ∗ T ] = TF [S]TF [T ]

Proposition (parité)
x(t) réel X(−f) = X∗(f) symétrie hermitienne)
x(t) réel paire X(f) réel paire
x(t) réel impaire X(t) imaginaire pure et impaire

Remarque: – tout signal à une réalité temporelle et fréquentielle, liées par la TF. – La TF est bijective
deL2 dans L2 ( se montre avec l’égalité de Parseval).
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3.6 TF et corrélation

On appelle densité spectrale d’énergie (DSE) de x:

Γx(f) = |X(f)|2

→ Donne la répartition spectrale de l’information.

Définition

Proposition (Théorème de Wiener Khintchine)

Γx(f) = TF [γx(τ)]

On a de plus pour les signaux à énergie finie :∫
R

Γx(f) =
∫
R
|x(t)|2 = Ex =

Remarque: Avec ce résultat, des signaux à support fréquentiels disjoints sont décorrélés.
Exemple: Tracés de Diagramme de Bode , Signal radio

Proposition
Pour des signaux à énergie infinie :

Γx(f) = lim
T→∞

|X(t)|2

2T = TF [γx(t)]

Avec
X(T ) =

∫ T

−T
x(t)e−j2πftdt

3.7 Résolution Spectrale

Hypothèse
• Soit x ∈ L2

• On définit le temps moyen

t0 =
∫
tx2(t)∫
x2(t)

• On définit alors la durée moyenne :

∆T =
∫

(t− t0)2x2(t)dt∫
x2(t)dt

• Le support spectral moyen :

∆f =
∫
f2|X(f)|2df∫
|X(f)|2df

Remarque: Avec x : R→ R on a la symétrie hermitienne et donc
∫
fX(f)df = 0

Proposition (Inégalité de Gabor)
Si x(t) est dérivable et tx2(t) −−−−→

t→+∞
0 , On a :

(∆t)2(∆f)2 ≥ 1
16π2
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Démonstration: On montre le cas t0 = 0, pour les autres on s’y ramène par translation. Soit :

I =
∫
R
tx(t)x′(t)dt

Avec Cauchy-Schwarz :
I2 ≤

∫
R
t2x2(t)dt.

∫
R
x′2(t)dt

Or :

I =
ipp

[
tx2(t)

2

]+∞

−∞
− 1

2

∫
R
x2(t)dt⇒ I2 = 1

4E
2
x

Avec l’égalité de Parseval on a alors :∫
R
x′2(t)dt = 4π2

∫
R
f2|X(f)|2df

On obtient alors ∫
R
t2x2(t)dt

∫
R
f2|X(f)|2 ≥

(∫
R
x2(t)dt

)2

i.e
(∆t)2(∆f)2 ≥ 1

16π2

Remarque: On ne peux avoir de bonne précision temporelle et fréquentielle. Analogue au principe
d’incertitude d’Heisenberg.

4 Échantillonnage et Transformée de Fourier à temps discret
La transformée de Fourier n’est pas réalisable numériquement, Il faut passer en temps discret.

x(t)
R→ R

Te
xk

Z→ R TFTD
X(ν)

∆F
SF

Un opérateur est dit invariant si :

∀τ ∈ R, ∃n ∈ Z, tel que x(t− τ) induit yk−n

Où yk est la sortie associé à x(t).

Définition

Proposition
L’échantillonage est un opérateur :
• Linéaire
• Invariant pour τ = nTe , Te étant la période d’échantillonage
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4.1 TF et TF à temps discret

On pose :

x̂(t) = x(t)
∑

δ(t− kTe)

=
∑

xkδ(t− kTe)

X̂(f) =
∫
R

∑
xkδ(t− kTe)e−j2πftdt

=
∑∫

R
δ(t− kTe)e−j2πftdt

=
∑

xke−j2πfkTe

=
∑

xke−j2πνk, Avec : ν = f

Fe
= fTe

TF [x̂] = TFTD[xk]

Proposition (TF à TD)
Alors la transformée de Fourier à temps discret de x est :

XTD(ν) =
∑

xke−j2πνk

Elle s’écrit comme une série de Fourier, l’échantillonnage périodise le spectre.

Remarque: On défini la TF TD inverse comme :

xk =
∫

[1]
XTD(ν)ej2πνkdν

= 1
Te

∫
[Te]

XTD(f/Te)e−j2πfk/Tedf

De même :

X̂(f) =
∫
x(t)

∑
Z
δ(t− kTe)e−j2πftdt

= X(f) ∗
∑

e−j2πfk/Fe

= X(f) 1
Te

∑
Z
δ(f − kFe) formule sommatoire de Poisson

= 1
Te

∑
X(f − kFe)

Les échantillons de xk sont aussi les coefficients de la série Fourier XTD

Remarque: Peut on échantillonner x(t) sans perdre d’information ?
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4.2 Théorème de Shannon

Un signal à valeur dans R et à support spectral fini [−fmax; fmax] est entièrement
défini par ses valeurs régulièrement espacé de 1

Fe
= Te Pour :

Fe
2 > fmax

Théorème

Remarque:
• Suivant ce théorème l’espace des fonctions ayants un spectre ⊂ [−Fe/2, Fe/2] est un espace vectoriel
où chaque élément est identifié à ses échantillons. Quelle est la base de cet espace ?
• En pratique le support fréquentiel n’est pas borné.
• pour réduire le recouvrement on passe donc par un filtre (antirepliement du spectre)
•

4.3 Interpolation : Passage de TD vers TC

On rappelle que le produit dans l’espace de Fourier se traduit par une convolution dans l’espace des
fonctions

x(t) = xk ∗ TF−1[porte]

4.3.1 Interpolation idéale

On récupère la partie principale du spectre (centrée en 0, ne contenant pas les repliements)

X(f) = XTD(f)P[Fe](f)

où P[Fe] est une porte fréquentielle de largeur Fe

x(t) = TF−1[X(f)] = TF−1[XTD(f)] ∗ TF−1[PFe(f)]
=
∑

xkδ(t− kTe) ∗ sinc(πFet)

=
∑

xksinc(πFe(t− kTe))

Proposition
La famille des sinc décalés est une famille génératrice de l’EV des signaux à support
spectral borné (c’est même une base )

Remarque: L’interpolation idéale nécessite une série infinie et un support temporel infini, on a un
problème de causalité. D’autres méthode existent.

4.3.2 Bloqueur d’ordre 0 (BOZ)

principe : Maintenir la valeur xk constante sur l’intervalle [kTe; (k + 1)Te], fonction escalier

x̃(t) =
∑

xk[uH(t− kTe)− uH(t− (k + 1)Te)] =
∑

xkδ(t− kTe) ∗ uH(t)− uH(t− Te)︸ ︷︷ ︸
filtre équivalent ?
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Figure 2 – Bloqueur d’ordre 0

Analyse Fréquentielle

TF (uH(t)− uH(t− Te)] = 1
j2πf −

e−j2πfTe

j2πf = e−jπfTe sin(πfTe)
πfTe

= e−j2πfTe/2.Tesinc(πfTe)︸ ︷︷ ︸
Remplace la fenêtre fréquentielle

Remarque: Pour améliorer l’interpolation, on centre la porte autour de kTe

4.3.3 Extrapolateur linéaire à retard pur

principe Réalise une interpolation linéaire entre 2 échantillons

x̃ =
[
xk−1 + t− kTe

Te
(xk − xk−)

]
[u(t− kTe)− u(t− (k + 1)te)]

c’est visuellement mieux.

x̃(t) =
∑

xkδ(t− kTe) ∗
(
t

Te
u(t)− 2(t− Te)

Te
u(t− Te) + t− 2Te

Te
y(t− 2Te)

)
X̃(f) = XTD(f). 1

Te(j2πf)2 −
2
Te

e−j2πfTe

(j2πf)2 + e−j4πfTe

(j2πf)2

= Te e−j2πfTe︸ ︷︷ ︸
retard

sinc2(πfTe)︸ ︷︷ ︸
atténuation↗

Exemple: Bloqueur d’ordre 1

5 Transformée de Fourier discrète TFD
• basé sur la TF à TD
• Grille fréquentielle [0;Fe[
• Signaux à horizon fini, discrétisé.
Soit N le nombre de point équidistants sur [0, 1[ pour le calcul de TF à TD
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5.1 Dualité

Preuve de la dualité Comme pour le cas temporel, on utilise l’égalité entre les distributions On a au
sens des distributions :

X̂(ν) = 1
N

N−1∑
k=0

XTD( k
N

)δ(ν − k/N)

= 1
N
XTD(ν)

N−1∑
k=0

δ(ν − k/N)

On a donc égalité pour les TFs inverses : Définition de la TFD−1

x̂i = 1
N

∫
[1]

N−1∑
k=0

XTD( k
N

)δ(ν − k/N)ej2πiν)dν

= 1
N

N−1∑
k=0

XTD( k
N

)ej2πki/N )

On a l’expression d’une série de Fourier , donc les x̂i sont N-périodiques

Proposition (TFD)

X(k) =
N−1∑
n=0

x(n)e−2iπk n
N pour 0 ≤ k < N ]

Et pour la tranformée inverse :

x(n) = 1
N

N−1∑
k=0

X(k)e2πin k
N

Remarque: pour analyser le spectre, et il peut être intéressant d’augmenter ce nombre de points
d’analyse afin d’augmenter la précision spectrale ( δF = Fe/N ; on peut : – Augmenter la fréquence
d’échantillonnage. Mais cela a un coût en termes de ressources matérielles.
– Faire une interpolation. – complétion de zéros (en anglais zero-padding), qui consiste à compléter le signal
s ( n ) s(n) par P zéros. Le nombre de points d’analyse est donc augmenté, mais le nombre de points de
signal utile reste le même on obtient une TFD de période N + P au lieu de N. Merci Wikipédia, je dormais

Remarque: L’espace des fréquences et du signal temporel étant ici discrétisé et fini , on se ramène un
simple changement de base , et donc un calcul matriciel.


f0
f1
f2
. . .
fn−1

 =


1 1 1 . . . 1
1 w w2 . . . wn−1

1 w2 w4 . . . w2(n−1)

. . .
...

... . . . ...
1 wn−1 w2(n−1) . . . w(n−1)2)




x0
x1
x2
. . .
xn−1


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